Generalized normal matrices

被引:0
|
作者
Hong-ping Ma
Zheng-ke Miao
Jiong-sheng Li
机构
[1] Xuzhou Normal University,School of Mathematical Sciences
[2] University of Science and Technology of China,Department of Mathematics
来源
Applied Mathematics-A Journal of Chinese Universities | 2008年 / 23卷
关键词
generalized normal matrix; congruence; canonical form; invariant; 15A04; 15A18; 15A60;
D O I
暂无
中图分类号
学科分类号
摘要
A matrix A ∈ Mn(C) is called generalized normal provided that there is a positive definite Hermite matrix H such that HAH is normal. In this paper, these matrices are investigated and their canonical form, invariants and relative properties in the sense of congruence are obtained.
引用
收藏
页码:240 / 244
页数:4
相关论文
共 50 条
  • [31] Generalized Hadamard Matrices
    Hayden J.L.
    Designs, Codes and Cryptography, 1997, 12 (1) : 69 - 73
  • [32] Generalized oscillatory matrices
    Gasso, M. Teresa
    Torregrosa, Juan R.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2007, 936 : 237 - +
  • [33] GENERALIZED TOPOLOGICAL MATRICES
    SAEKS, R
    IEEE TRANSACTIONS ON CIRCUIT THEORY, 1967, CT14 (01): : 81 - &
  • [34] GENERALIZED COMMUTATORS OF MATRICES
    TAUSSKY, O
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 59 (01) : 57 - 57
  • [35] GENERALIZED TERRACED MATRICES
    Durna, Nuh
    Yildirim, Mustafa
    MISKOLC MATHEMATICAL NOTES, 2016, 17 (01) : 201 - 208
  • [36] Generalized oscillatory matrices
    Fallat, SM
    Fiedler, M
    Markham, TL
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 359 (1-3) : 79 - 90
  • [37] Generalized LCM matrices
    Bege, Antal
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 79 (3-4): : 309 - 315
  • [38] ON GENERALIZED INVERSES OF MATRICES
    LANGENHOP, CE
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1967, 15 (05) : 1239 - +
  • [39] ON GENERALIZED INVERSES OF MATRICES
    PEARL, MH
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1966, 62 : 673 - &
  • [40] GENERALIZED SCHUR COMPLEMENTS OF MATRICES AND COMPOUND MATRICES
    Liu, Jianzhou
    Huang, Rong
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2010, 21 : 12 - 24