Generalized normal matrices

被引:0
|
作者
Hong-ping Ma
Zheng-ke Miao
Jiong-sheng Li
机构
[1] Xuzhou Normal University,School of Mathematical Sciences
[2] University of Science and Technology of China,Department of Mathematics
关键词
generalized normal matrix; congruence; canonical form; invariant; 15A04; 15A18; 15A60;
D O I
暂无
中图分类号
学科分类号
摘要
A matrix A ∈ Mn(C) is called generalized normal provided that there is a positive definite Hermite matrix H such that HAH is normal. In this paper, these matrices are investigated and their canonical form, invariants and relative properties in the sense of congruence are obtained.
引用
收藏
页码:240 / 244
页数:4
相关论文
共 50 条
  • [21] Generalized Cesaro Matrices
    Rhaly, H. C., Jr.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (01): : 196 - 196
  • [22] ON GENERALIZED TOURNAMENT MATRICES
    MOON, JW
    PULLMAN, NJ
    SIAM REVIEW, 1970, 12 (03) : 384 - &
  • [23] GENERALIZED INDEX MATRICES
    ATANASSOV, KT
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1987, 40 (11): : 15 - 18
  • [24] Generalized modularity matrices
    Fasino, Dario
    Tudisco, Francesco
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 502 : 327 - 345
  • [25] Generalized γ-generating matrices
    Sukhorukova E.O.
    Journal of Mathematical Sciences, 2016, 218 (1) : 89 - 104
  • [26] Generalized Sarymsakov Matrices
    Xia, Weiguo
    Liu, Ji
    Cao, Ming
    Johansson, Karl Henrik
    Basar, Tamer
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (08) : 3085 - 3100
  • [27] ON GENERALIZED MOMENT MATRICES
    Zhang, Ruiming
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (08) : 2589 - 2595
  • [28] On Generalized Transitive Matrices
    Jiang, Jing
    Shu, Lan
    Tian, Xinan
    JOURNAL OF APPLIED MATHEMATICS, 2011,
  • [29] GENERALIZED FUZZY MATRICES
    KIM, KH
    ROUSH, FW
    FUZZY SETS AND SYSTEMS, 1980, 4 (03) : 293 - 315
  • [30] ON GENERALIZED HAUSDORFF MATRICES
    BORWEIN, D
    CASS, FP
    SAYRE, JE
    JOURNAL OF APPROXIMATION THEORY, 1986, 48 (04) : 354 - 360