Abstract wave equations and associated Dirac-type operators

被引:0
|
作者
Fritz Gesztesy
Jerome A. Goldstein
Helge Holden
Gerald Teschl
机构
[1] University of Missouri,Department of Mathematics
[2] University of Memphis,Department of Mathematical Sciences
[3] Norwegian University of Science and Technology,Department of Mathematical Sciences
[4] Faculty of Mathematics,undefined
[5] University of Vienna,undefined
[6] International Erwin Schrödinger Institute for Mathematical Physics,undefined
来源
关键词
Dirac operators; Supersymmetry; Wave equations; Semigroups; Damping terms; Quadratic operator pencils; Primary 35J25; 35L05; 35L15; Secondary 35J40; 35P05; 47A05; 47A10; 47F05;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the unitary equivalence of generators GA,R associated with abstract damped wave equations of the type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\ddot{u} + R \dot{u} + A^*A u = 0}$$\end{document} in some Hilbert space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}_1}$$\end{document} and certain non-self-adjoint Dirac-type operators QA,R (away from the nullspace of the latter) in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}_1 \oplus \mathcal{H}_2}$$\end{document} . The operator QA,R represents a non-self-adjoint perturbation of a supersymmetric self-adjoint Dirac-type operator. Special emphasis is devoted to the case where 0 belongs to the continuous spectrum of A*A. In addition to the unitary equivalence results concerning GA,R and QA,R, we provide a detailed study of the domain of the generator GA,R, consider spectral properties of the underlying quadratic operator pencil \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M(z) = |A|^2 - iz R - z^2 I_{\mathcal{H}_1}, z\in\mathbb{C}}$$\end{document} , derive a family of conserved quantities for abstract wave equations in the absence of damping, and prove equipartition of energy for supersymmetric self-adjoint Dirac-type operators. The special example where R represents an appropriate function of |A| is treated in depth, and the semigroup growth bound for this example is explicitly computed and shown to coincide with the corresponding spectral bound for the underlying generator and also with that of the corresponding Dirac-type operator. The cases of undamped (R = 0) and damped (R ≠ 0) abstract wave equations as well as the cases \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A^* A \geq \varepsilon I_{\mathcal{H}_1}}$$\end{document} for some \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon > 0}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0 \in \sigma (A^* A)}$$\end{document} (but 0 not an eigenvalue of A*A) are separately studied in detail.
引用
收藏
页码:631 / 676
页数:45
相关论文
共 50 条
  • [31] Symmetries and supersymmetries of Dirac-type operators on Euclidean Taub-NUT space
    Cotaescu, II
    Visinescu, M
    GLOBAL ANALYSIS AND APPLIED MATHEMATICS, 2004, 729 : 124 - 130
  • [32] Inverse spectral problems for Dirac-type operators with global delay on a star graph
    Wang, Feng
    Yang, Chuan-Fu
    Buterin, Sergey
    Djuric, Nebojsa
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (02)
  • [33] Dirac-type operators on curved spaces and the role of Killing-Yano tensors
    Visinescu, M
    THEORETICAL AND MATHEMATICAL PHYSICS, 2005, 144 (01) : 1054 - 1062
  • [34] Symmetries and supersymmetries of the Dirac-type operators on Euclidean Taub-Nut space
    Cotaescu, II
    Visinescu, M
    Mathematical, Theoretical and Phenomenological Challenges Beyond the Standard Model: PERSPECTIVES OF THE BALKAN COLLABORATIONS, 2005, : 186 - 196
  • [35] Uniqueness results for matrix-valued Schrodinger, Jacobi, and Dirac-type operators
    Gesztesy, F
    Kiselev, A
    Makarov, KA
    MATHEMATISCHE NACHRICHTEN, 2002, 239 : 103 - 145
  • [36] The η-invariant, Maslov index, and spectral flow for Dirac-type operators on manifolds with boundary
    Kirk, P
    Lesch, M
    FORUM MATHEMATICUM, 2004, 16 (04) : 553 - 629
  • [37] Inverse spectral problems for Dirac-type operators with global delay on a star graph
    Feng Wang
    Chuan-Fu Yang
    Sergey Buterin
    Nebojs̆a Djurić
    Analysis and Mathematical Physics, 2024, 14
  • [38] L2-kernels of Dirac-type operators on monopole moduli spaces
    Moore, Gregory W.
    Royston, Andrew B.
    Van den Bleeken, Dieter
    STRING-MATH 2015, 2017, 96 : 177 - 190
  • [39] INTEGRAL-EQUATIONS WITH SYMMETRICAL KERNEL APPLIED TO A SYSTEM WITH A DIRAC-TYPE SPECTRUM
    MA, ZQ
    DAI, AY
    JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (06) : 1321 - 1324
  • [40] Graded differential equations and Dirac type operators
    Zilbergleit, LV
    ACTA APPLICANDAE MATHEMATICAE, 1999, 56 (2-3) : 301 - 320