Abstract wave equations and associated Dirac-type operators

被引:0
|
作者
Fritz Gesztesy
Jerome A. Goldstein
Helge Holden
Gerald Teschl
机构
[1] University of Missouri,Department of Mathematics
[2] University of Memphis,Department of Mathematical Sciences
[3] Norwegian University of Science and Technology,Department of Mathematical Sciences
[4] Faculty of Mathematics,undefined
[5] University of Vienna,undefined
[6] International Erwin Schrödinger Institute for Mathematical Physics,undefined
来源
关键词
Dirac operators; Supersymmetry; Wave equations; Semigroups; Damping terms; Quadratic operator pencils; Primary 35J25; 35L05; 35L15; Secondary 35J40; 35P05; 47A05; 47A10; 47F05;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the unitary equivalence of generators GA,R associated with abstract damped wave equations of the type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\ddot{u} + R \dot{u} + A^*A u = 0}$$\end{document} in some Hilbert space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}_1}$$\end{document} and certain non-self-adjoint Dirac-type operators QA,R (away from the nullspace of the latter) in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}_1 \oplus \mathcal{H}_2}$$\end{document} . The operator QA,R represents a non-self-adjoint perturbation of a supersymmetric self-adjoint Dirac-type operator. Special emphasis is devoted to the case where 0 belongs to the continuous spectrum of A*A. In addition to the unitary equivalence results concerning GA,R and QA,R, we provide a detailed study of the domain of the generator GA,R, consider spectral properties of the underlying quadratic operator pencil \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M(z) = |A|^2 - iz R - z^2 I_{\mathcal{H}_1}, z\in\mathbb{C}}$$\end{document} , derive a family of conserved quantities for abstract wave equations in the absence of damping, and prove equipartition of energy for supersymmetric self-adjoint Dirac-type operators. The special example where R represents an appropriate function of |A| is treated in depth, and the semigroup growth bound for this example is explicitly computed and shown to coincide with the corresponding spectral bound for the underlying generator and also with that of the corresponding Dirac-type operator. The cases of undamped (R = 0) and damped (R ≠ 0) abstract wave equations as well as the cases \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A^* A \geq \varepsilon I_{\mathcal{H}_1}}$$\end{document} for some \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon > 0}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0 \in \sigma (A^* A)}$$\end{document} (but 0 not an eigenvalue of A*A) are separately studied in detail.
引用
收藏
页码:631 / 676
页数:45
相关论文
共 50 条
  • [1] Abstract wave equations and associated Dirac-type operators
    Gesztesy, Fritz
    Goldstein, Jerome A.
    Holden, Helge
    Teschl, Gerald
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2012, 191 (04) : 631 - 676
  • [2] Dirac-Type Operators
    Gesztesy, Fritz
    Waurick, Marcus
    CALLIAS INDEX FORMULA REVISITED, 2016, 2157 : 55 - 63
  • [3] Collapsing and Dirac-type operators
    Lott, J
    GEOMETRIAE DEDICATA, 2002, 91 (01) : 175 - 196
  • [4] Collapsing and Dirac-Type Operators
    John Lott
    Geometriae Dedicata, 2002, 91 : 175 - 196
  • [5] Dirac-type tensor equations
    Marchuk, NG
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2001, 116 (11): : 1225 - 1248
  • [6] ON THE SPECTRUM OF SPHERICAL DIRAC-TYPE OPERATORS
    Anghel, N.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2013, 43 (06) : 1825 - 1856
  • [7] Dirac-Type Equations in a Gravitational Field, with Vector Wave Function
    Arminjon, Mayeul
    FOUNDATIONS OF PHYSICS, 2008, 38 (11) : 1020 - 1045
  • [8] HIDDEN SYMMETRIES AND DIRAC-TYPE OPERATORS
    Visinescu, Mihai
    ROMANIAN JOURNAL OF PHYSICS, 2008, 53 (9-10): : 1213 - 1218
  • [9] Dirac-Type Equations in a Gravitational Field, with Vector Wave Function
    Mayeul Arminjon
    Foundations of Physics, 2008, 38 : 1020 - 1045
  • [10] A concept of Dirac-type tensor equations
    Marchuk, NG
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2002, 117 (12): : 1357 - 1385