On symplectomorphisms and Hamiltonian flows

被引:0
|
作者
Franco Cardin
机构
[1] Università degli Studi di Padova,Dipartimento di Matematica Tullio Levi
关键词
Symplectomorphisms; hamiltonian systems; symplectic topology; 53D05; 53D22; 37J11;
D O I
暂无
中图分类号
学科分类号
摘要
We propose the construction of a sequence of time one flows of autonomous Hamiltonian vector fields, converging to a fixed near the identity C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} symplectic diffeomorphism ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}. This convergence is proved to be uniformly exponentially fast, in a non analytic symplectic topology framework.
引用
收藏
相关论文
共 50 条
  • [31] Hamiltonian description of idealized geophysical flows
    Bannon, PR
    14TH CONFERENCE ON ATMOSPHERIC AND OCEANIC FLUID DYNAMICS, 2003, : 42 - 46
  • [32] Stochastic Hamiltonian flows with singular coefficients
    Xicheng Zhang
    Science China Mathematics, 2018, 61 : 1353 - 1384
  • [33] Twisting in Hamiltonian flows and perfect fluids
    Drivas, Theodore D.
    Elgindi, Tarek M.
    Jeong, In-Jee
    INVENTIONES MATHEMATICAE, 2024, 238 (01) : 331 - 370
  • [34] Hamiltonian and gradient structures in the Toda flows
    Bloch, AM
    Gekhtman, MI
    JOURNAL OF GEOMETRY AND PHYSICS, 1998, 27 (3-4) : 230 - 248
  • [35] Renormalization and Periodic Orbits¶for Hamiltonian Flows
    Juan J. Abad
    Hans Koch
    Communications in Mathematical Physics, 2000, 212 : 371 - 394
  • [36] Renormalization and periodic orbits for Hamiltonian flows
    Abad, JJ
    Koch, H
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 212 (02) : 371 - 394
  • [37] Embedding the torus automorphisms to Hamiltonian flows
    Akritas, P
    Antoniou, I
    Pronko, GP
    CHAOS SOLITONS & FRACTALS, 2001, 12 (14-15) : 2815 - 2819
  • [38] On the Hamiltonian approach: Applications to geophysical flows
    Goncharov, V
    Pavlov, V
    NONLINEAR PROCESSES IN GEOPHYSICS, 1998, 5 (04) : 219 - 240
  • [39] Straight line orbits in Hamiltonian flows
    J. E. Howard
    J. D. Meiss
    Celestial Mechanics and Dynamical Astronomy, 2009, 105 : 337 - 352
  • [40] Hamiltonian structure for vortex filament flows
    Blackmore, D
    Knio, O
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S145 - S148