On symplectomorphisms and Hamiltonian flows

被引:0
|
作者
Franco Cardin
机构
[1] Università degli Studi di Padova,Dipartimento di Matematica Tullio Levi
关键词
Symplectomorphisms; hamiltonian systems; symplectic topology; 53D05; 53D22; 37J11;
D O I
暂无
中图分类号
学科分类号
摘要
We propose the construction of a sequence of time one flows of autonomous Hamiltonian vector fields, converging to a fixed near the identity C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} symplectic diffeomorphism ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}. This convergence is proved to be uniformly exponentially fast, in a non analytic symplectic topology framework.
引用
收藏
相关论文
共 50 条
  • [21] Renormalization of multidimensional Hamiltonian flows
    Khanin, Kostya
    Dias, Joao Lopes
    Marklof, Jens
    NONLINEARITY, 2006, 19 (12) : 2727 - 2753
  • [22] Stochastic Wasserstein Hamiltonian Flows
    Cui, Jianbo
    Liu, Shu
    Zhou, Haomin
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 36 (4) : 3885 - 3921
  • [23] Jacobian pairs and Hamiltonian flows
    Campbell, LA
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1997, 115 (01) : 15 - 26
  • [24] Characterization of diffeomorphisms that are symplectomorphisms
    Janeczko, Stanislaw
    Jelonek, Zbigniew
    FUNDAMENTA MATHEMATICAE, 2009, 205 (02) : 147 - 160
  • [25] SYMPLECTOMORPHISMS OF EXOTIC DISCS
    Casals, Roger
    Keating, Ailsa
    Smith, Ivan
    Courte, Sylvain
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2018, 5 : 289 - 316
  • [26] Linear automorphisms that are symplectomorphisms
    Janeczko, S
    Jelonek, Z
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 69 : 503 - 517
  • [27] Straight line orbits in Hamiltonian flows
    Howard, J. E.
    Meiss, J. D.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2009, 105 (04): : 337 - 352
  • [28] Lyapunov and reversibility errors for Hamiltonian flows
    Panichi, F.
    Turchetti, G.
    CHAOS SOLITONS & FRACTALS, 2018, 112 : 83 - 91
  • [29] Geometric solitons of Hamiltonian flows on manifolds
    Song, Chong
    Sun, Xiaowei
    Wang, Youde
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (12)
  • [30] Stochastic Hamiltonian flows with singular coefficients
    Zhang, Xicheng
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (08) : 1353 - 1384