Simple games versus weighted voting games: bounding the critical threshold value

被引:0
|
作者
Frits Hof
Walter Kern
Sascha Kurz
Kanstantsin Pashkovich
Daniël Paulusma
机构
[1] University of Twente,
[2] University of Bayreuth,undefined
[3] University of Ottawa,undefined
[4] Durham University,undefined
来源
Social Choice and Welfare | 2020年 / 54卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A simple game (N, v) is given by a set N of n players and a partition of 2N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^N$$\end{document} into a set L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document} of losing coalitions L with value v(L)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v(L)=0$$\end{document} that is closed under taking subsets and a set W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {W}$$\end{document} of winning coalitions W with value v(W)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v(W)=1$$\end{document}. We let α=minp⩾0,p≠0maxW∈W,L∈Lp(L)p(W)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha = \min _{p\geqslant {\varvec{0}}, p\ne {\varvec{0}}}\max _{W\in \mathcal{W}, L\in \mathcal{L}} \frac{p(L)}{p(W)}$$\end{document}. It is known that the subclass of simple games with α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <1$$\end{document} coincides with the class of weighted voting games. Hence, α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} can be seen as a measure of the distance between a simple game and the class of weighted voting games. We prove that α⩽14n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \leqslant \frac{1}{4}n$$\end{document} holds for every simple game (N, v), confirming the conjecture of Freixas and Kurz (Int J Game Theory 43:659–692, 2014). For complete simple games, Freixas and Kurz conjectured that α=O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =O(\sqrt{n})$$\end{document}. We also prove this conjecture, up to an lnn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ln n$$\end{document} factor. Moreover, we prove that for graphic simple games, that is, simple games in which every minimal winning coalition has size 2, the problem of computing α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is NP-hard, but polynomial-time solvable if the underlying graph is bipartite. Finally, we show that for every graphic simple game, deciding if α<α0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <\alpha _0$$\end{document} is polynomial-time solvable for every fixed α0>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _0>0$$\end{document}.
引用
收藏
页码:609 / 621
页数:12
相关论文
共 50 条
  • [41] Roughly weighted hierarchical simple games
    Ali Hameed
    Arkadii Slinko
    International Journal of Game Theory, 2015, 44 : 295 - 319
  • [42] Enumeration of weighted games with minimum and an analysis of voting power for bipartite complete games with minimum
    Josep Freixas
    Sascha Kurz
    Annals of Operations Research, 2014, 222 : 317 - 339
  • [43] Enumeration of weighted games with minimum and an analysis of voting power for bipartite complete games with minimum
    Freixas, Josep
    Kurz, Sascha
    ANNALS OF OPERATIONS RESEARCH, 2014, 222 (01) : 317 - 339
  • [44] On the Complexity of the Inverse Semivalue Problem for Weighted Voting Games
    Diakonikolas, Ilias
    Pavlou, Chrystalla
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 1869 - 1876
  • [45] Correction to: On minimum sum representations for weighted voting games
    Sascha Kurz
    Annals of Operations Research, 2018, 271 : 1087 - 1089
  • [46] False-Name Manipulations in Weighted Voting Games
    Aziz, Haris
    Bachrach, Yoram
    Elkind, Edith
    Paterson, Mike
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2011, 40 : 57 - 93
  • [47] Monotonicity of power in weighted voting games with restricted communication
    Napel, Stefan
    Nohn, Andreas
    Maria Alonso-Meijide, Jose
    MATHEMATICAL SOCIAL SCIENCES, 2012, 64 (03) : 247 - 257
  • [48] BANZHAF VALUE FOR GAMES ANALYZING VOTING WITH ROTATION
    Sosnowska, Honorata
    OPERATIONS RESEARCH AND DECISIONS, 2014, 24 (04) : 75 - 88
  • [49] On the value problem in weighted timed games
    LSV, CNRS, ENS, Cachan, France
    Leibniz Int. Proc. Informatics, LIPIcs, (311-324):
  • [50] Ramsey games near the critical threshold
    Conlon, David
    Das, Shagnik
    Lee, Joonkyung
    Meszaros, Tamas
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (04) : 940 - 957