Simple games versus weighted voting games: bounding the critical threshold value

被引:0
|
作者
Frits Hof
Walter Kern
Sascha Kurz
Kanstantsin Pashkovich
Daniël Paulusma
机构
[1] University of Twente,
[2] University of Bayreuth,undefined
[3] University of Ottawa,undefined
[4] Durham University,undefined
来源
Social Choice and Welfare | 2020年 / 54卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A simple game (N, v) is given by a set N of n players and a partition of 2N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^N$$\end{document} into a set L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document} of losing coalitions L with value v(L)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v(L)=0$$\end{document} that is closed under taking subsets and a set W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {W}$$\end{document} of winning coalitions W with value v(W)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v(W)=1$$\end{document}. We let α=minp⩾0,p≠0maxW∈W,L∈Lp(L)p(W)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha = \min _{p\geqslant {\varvec{0}}, p\ne {\varvec{0}}}\max _{W\in \mathcal{W}, L\in \mathcal{L}} \frac{p(L)}{p(W)}$$\end{document}. It is known that the subclass of simple games with α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <1$$\end{document} coincides with the class of weighted voting games. Hence, α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} can be seen as a measure of the distance between a simple game and the class of weighted voting games. We prove that α⩽14n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \leqslant \frac{1}{4}n$$\end{document} holds for every simple game (N, v), confirming the conjecture of Freixas and Kurz (Int J Game Theory 43:659–692, 2014). For complete simple games, Freixas and Kurz conjectured that α=O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =O(\sqrt{n})$$\end{document}. We also prove this conjecture, up to an lnn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ln n$$\end{document} factor. Moreover, we prove that for graphic simple games, that is, simple games in which every minimal winning coalition has size 2, the problem of computing α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is NP-hard, but polynomial-time solvable if the underlying graph is bipartite. Finally, we show that for every graphic simple game, deciding if α<α0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <\alpha _0$$\end{document} is polynomial-time solvable for every fixed α0>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _0>0$$\end{document}.
引用
收藏
页码:609 / 621
页数:12
相关论文
共 50 条
  • [21] Trading transforms of non-weighted simple games and integer weights of weighted simple games
    Akihiro Kawana
    Tomomi Matsui
    Theory and Decision, 2022, 93 : 131 - 150
  • [22] Trading transforms of non-weighted simple games and integer weights of weighted simple games
    Kawana, Akihiro
    Matsui, Tomomi
    THEORY AND DECISION, 2022, 93 (01) : 131 - 150
  • [23] A note on hierarchies in weighted voting games and partitions
    Friedman, Jane
    RAMANUJAN JOURNAL, 2016, 41 (1-3): : 305 - 310
  • [24] On minimum sum representations for weighted voting games
    Kurz, Sascha
    ANNALS OF OPERATIONS RESEARCH, 2012, 196 (01) : 361 - 369
  • [25] Average weights and power in weighted voting games
    Boratyn, Daria
    Kirsch, Werner
    Slomczynski, Wojciech
    Stolicki, Dariusz
    Zyczkowski, Karol
    MATHEMATICAL SOCIAL SCIENCES, 2020, 108 : 90 - 99
  • [26] Classification of computationally tractable weighted voting games
    Aziz, Haris
    Paterson, Mike
    WORLD CONGRESS ON ENGINEERING 2008, VOLS I-II, 2008, : 129 - 134
  • [27] A note on hierarchies in weighted voting games and partitions
    Jane Friedman
    The Ramanujan Journal, 2016, 41 : 305 - 310
  • [28] Meaningful learning in weighted voting games: an experiment
    Guerci, Eric
    Hanaki, Nobuyuki
    Watanabe, Naoki
    THEORY AND DECISION, 2017, 83 (01) : 131 - 153
  • [29] Dummy Players and the Quota in Weighted Voting Games
    Barthelemy, Fabrice
    Lepelley, Dominique
    Martin, Mathieu
    Smaoui, Hatem
    GROUP DECISION AND NEGOTIATION, 2021, 30 (01) : 43 - 61
  • [30] Meaningful learning in weighted voting games: an experiment
    Eric Guerci
    Nobuyuki Hanaki
    Naoki Watanabe
    Theory and Decision, 2017, 83 : 131 - 153