Simple games versus weighted voting games: bounding the critical threshold value

被引:0
|
作者
Frits Hof
Walter Kern
Sascha Kurz
Kanstantsin Pashkovich
Daniël Paulusma
机构
[1] University of Twente,
[2] University of Bayreuth,undefined
[3] University of Ottawa,undefined
[4] Durham University,undefined
来源
Social Choice and Welfare | 2020年 / 54卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A simple game (N, v) is given by a set N of n players and a partition of 2N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^N$$\end{document} into a set L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document} of losing coalitions L with value v(L)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v(L)=0$$\end{document} that is closed under taking subsets and a set W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {W}$$\end{document} of winning coalitions W with value v(W)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v(W)=1$$\end{document}. We let α=minp⩾0,p≠0maxW∈W,L∈Lp(L)p(W)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha = \min _{p\geqslant {\varvec{0}}, p\ne {\varvec{0}}}\max _{W\in \mathcal{W}, L\in \mathcal{L}} \frac{p(L)}{p(W)}$$\end{document}. It is known that the subclass of simple games with α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <1$$\end{document} coincides with the class of weighted voting games. Hence, α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} can be seen as a measure of the distance between a simple game and the class of weighted voting games. We prove that α⩽14n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \leqslant \frac{1}{4}n$$\end{document} holds for every simple game (N, v), confirming the conjecture of Freixas and Kurz (Int J Game Theory 43:659–692, 2014). For complete simple games, Freixas and Kurz conjectured that α=O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =O(\sqrt{n})$$\end{document}. We also prove this conjecture, up to an lnn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ln n$$\end{document} factor. Moreover, we prove that for graphic simple games, that is, simple games in which every minimal winning coalition has size 2, the problem of computing α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is NP-hard, but polynomial-time solvable if the underlying graph is bipartite. Finally, we show that for every graphic simple game, deciding if α<α0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <\alpha _0$$\end{document} is polynomial-time solvable for every fixed α0>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _0>0$$\end{document}.
引用
收藏
页码:609 / 621
页数:12
相关论文
共 50 条
  • [1] Simple games versus weighted voting games: bounding the critical threshold value
    Hof, Frits
    Kern, Walter
    Kurz, Sascha
    Pashkovich, Kanstantsin
    Paulusma, Daniel
    SOCIAL CHOICE AND WELFARE, 2020, 54 (04) : 609 - 621
  • [2] A Monotonic Weighted Banzhaf Value for Voting Games
    Manuel, Conrado M.
    Martin, Daniel
    MATHEMATICS, 2021, 9 (12)
  • [3] A simple "market value" bargaining model for weighted voting games: characterization and limit theorems
    Owen, Guillermo
    Lindner, Ines
    Feld, Scott L.
    Grofman, Bernard
    Ray, Leonard
    INTERNATIONAL JOURNAL OF GAME THEORY, 2006, 35 (01) : 111 - 128
  • [4] A simple “market value” bargaining model for weighted voting games: characterization and limit theorems
    Guillermo Owen
    Ines Lindner
    Scott L. Feld
    Bernard Grofman
    Leonard Ray
    International Journal of Game Theory, 2006, 35 : 111 - 128
  • [5] Reliability Weighted Voting Games
    Bachrach, Yoram
    Shah, Nisarg
    ALGORITHMIC GAME THEORY, SAGT 2013, 2013, 8146 : 38 - 49
  • [6] On the computational complexity of weighted voting games
    Elkind, Edith
    Goldberg, Leslie Ann
    Goldberg, Paul W.
    Wooldridge, Michael
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2009, 56 (02) : 109 - 131
  • [7] Inconsistent weighting in weighted voting games
    Sylvain Béal
    Marc Deschamps
    Mostapha Diss
    Issofa Moyouwou
    Public Choice, 2022, 191 : 75 - 103
  • [8] Structural Control in Weighted Voting Games
    Rey, Anja
    Rothe, Joerg
    AAMAS'16: PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS, 2016, : 1371 - 1372
  • [9] Manipulating the quota in weighted voting games
    Zuckerman, Michael
    Faliszewski, Piotr
    Bachrach, Yoram
    Elkind, Edith
    ARTIFICIAL INTELLIGENCE, 2012, 180 : 1 - 19
  • [10] Structural Control in Weighted Voting Games
    Rey, Anja
    Rothe, Joerg
    B E JOURNAL OF THEORETICAL ECONOMICS, 2018, 18 (02):