T − W relation and free energy of the Heisenberg chain at a finite temperature

被引:0
|
作者
Pengcheng Lu
Yi Qiao
Junpeng Cao
Wen-Li Yang
Kang jie Shi
Yupeng Wang
机构
[1] Northwest University,Institute of Modern Physics
[2] Chinese Academy of Sciences,Beijing National Laboratory for Condensed Matter Physics, Institute of Physics
[3] University of Chinese Academy of Sciences,School of Physical Sciences
[4] Songshan Lake Materials Laboratory,undefined
[5] Peng Huanwu Center for Fundamental Theory,undefined
[6] Shaanxi Key Laboratory for Theoretical Physics Frontiers,undefined
[7] The Yangtze River Delta Physics Research Center,undefined
关键词
Bethe Ansatz; Lattice Integrable Models;
D O I
暂无
中图分类号
学科分类号
摘要
A new nonlinear integral equation (NLIE) describing the thermodynamics of the Heisenberg spin chain is derived based on the t − W relation of the quantum transfer matrices. The free energy of the system in a magnetic field is thus obtained by solving the NLIE. This method can be generalized to other lattice quantum integrable models. Taking the SU(3)-invariant quantum spin chain as an example, we construct the corre- sponding NLIEs and compute the free energy. The present results coincide exactly with those obtained via other methods previously.
引用
收藏
相关论文
共 50 条
  • [1] T - W relation and free energy of the Heisenberg chain at a finite temperature
    Lu, Pengcheng
    Qiao, Yi
    Cao, Junpeng
    Yang, Wen-Li
    Shi, Kang Jie
    Wang, Yupeng
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (07)
  • [2] T - W relation and free energy of the antiperiodic XXZ chain with η=iπ3 at a finite temperature
    Lu, Pengcheng
    Cao, Junpeng
    Yang, Wen-Li
    Marquette, Ian
    Zhang, Yao-Zhong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (44)
  • [3] On the Finite Temperature Drude Weight of the Anisotropic Heisenberg Chain
    Benz, J.
    Fukui, T.
    Kluemper, A.
    Scheeren, C.
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74
  • [4] Free energy asymptotics of the quantum Heisenberg spin chain
    Marcin Napiórkowski
    Robert Seiringer
    Letters in Mathematical Physics, 2021, 111
  • [5] Free energy asymptotics of the quantum Heisenberg spin chain
    Napiorkowski, Marcin
    Seiringer, Robert
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (02)
  • [6] Emptiness formation probability at finite temperature for the isotropic Heisenberg chain
    Göhmann, F
    Klümper, A
    Seel, A
    PHYSICA B-CONDENSED MATTER, 2005, 359 : 807 - 809
  • [7] Finite temperature dynamics of the spin-half Heisenberg chain
    Starykh, OA
    Sandvik, AW
    Singh, RRP
    PHYSICA B, 1997, 241 : 563 - 565
  • [8] LOWER BOUND TO FREE ENERGY OF AN ANISOTROPIC LINEAR HEISENBERG CHAIN
    KAWATRA, MP
    KIJEWSKI, LJ
    PHYSICS LETTERS A, 1969, A 28 (07) : 472 - +
  • [9] Finite-temperature Drude weight within the anisotropic Heisenberg chain
    Herbrych, J.
    Prelovsek, P.
    Zotos, X.
    PHYSICAL REVIEW B, 2011, 84 (15)
  • [10] Multispinon Continua at Zero and Finite Temperature in a Near-Ideal Heisenberg Chain
    Lake, B.
    Tennant, D. A.
    Caux, J. -S.
    Barthel, T.
    Schollwoeck, U.
    Nagler, S. E.
    Frost, C. D.
    PHYSICAL REVIEW LETTERS, 2013, 111 (13)