Robust multi-view low-rank embedding clustering

被引:0
|
作者
Jian Dai
Hong Song
Yunzhi Luo
Zhenwen Ren
Jian Yang
机构
[1] Beijing Institute of Technology,School of Optics and Photonics
[2] Southwest University of Science and Technology,School of National Defence Science and Technology
[3] Ministry of Education,Key Laboratory of System Control and Information Processing
[4] China South Industries Group Corporation,Southwest Automation Research Institute
来源
关键词
Multi-view clustering; Subspace clustering; Embedding learning; Low-rank;
D O I
暂无
中图分类号
学科分类号
摘要
Significant improvements of multi-view subspace clustering have emerged in recent years. However, multi-view data are often lying on high-dimensional space and inevitably corrupted by noise and even outliers, which pose challenges for fully exploiting the intrinsic underlying relevance of multi-view data, as the redundant and corrupted features are highly deceptive. To address the above problems, this paper proposes a robust multi-view low-rank embedding (RMLE) method for clustering. Specifically, RMLE projects each high-dimensional view onto a clean low-rank embedding space without energy loss, such that multiple high-quality candidate affinity graphs are yielded by using self-expressiveness subspace learning. Meanwhile, it integrates the clean complimentary information of multi-view data in semantic space to learn a shared consensus affinity graph. Further, an efficient alternating optimization algorithm is designed to solve our RMLE by the alternating direction method of multipliers. Extensive experiments on four benchmark multi-view datasets demonstrate the performance superiority and advantages of RMLE against many state-of-the-art clustering methods.
引用
收藏
页码:7877 / 7890
页数:13
相关论文
共 50 条
  • [21] Tensor Low-Rank Graph Embedding and Learning for One-Step Incomplete Multi-View Clustering
    Wan, Minghua
    Zhu, Jingyu
    Sun, Chengli
    Yang, Zhangjing
    Yin, Jun
    Yang, Guowei
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9763 - 9775
  • [22] Constrained Low-Rank Tensor Learning for Multi-View Subspace Clustering
    Zhang, Tao
    Wang, Bo
    Zhang, Huanhuan
    Zhao, Yu
    [J]. 2022 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY, HUMAN-COMPUTER INTERACTION AND ARTIFICIAL INTELLIGENCE, VRHCIAI, 2022, : 49 - 54
  • [23] Mixed structure low-rank representation for multi-view subspace clustering
    Shouhang Wang
    Yong Wang
    Guifu Lu
    Wenge Le
    [J]. Applied Intelligence, 2023, 53 : 18470 - 18487
  • [24] Weighted Low-Rank Tensor Representation for Multi-View Subspace Clustering
    Wang, Shuqin
    Chen, Yongyong
    Zheng, Fangying
    [J]. FRONTIERS IN PHYSICS, 2021, 8
  • [25] Low-Rank Kernel Tensor Learning for Incomplete Multi-View Clustering
    Wu, Tingting
    Feng, Songhe
    Yuan, Jiazheng
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 14, 2024, : 15952 - 15960
  • [26] Unified Graph and Low-Rank Tensor Learning for Multi-View Clustering
    Wu, Jianlong
    Xie, Xingxu
    Nie, Liqiang
    Lin, Zhouchen
    Zha, Hongbin
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6388 - 6395
  • [27] Multi-view Clustering with Latent Low-rank Proxy Graph Learning
    Jian Dai
    Zhenwen Ren
    Yunzhi Luo
    Hong Song
    Jian Yang
    [J]. Cognitive Computation, 2021, 13 : 1049 - 1060
  • [28] Adaptive Weighted Low-Rank Sparse Representation for Multi-View Clustering
    Khan, Mohammad Ahmar
    Khan, Ghufran Ahmad
    Khan, Jalaluddin
    Anwar, Taushif
    Ashraf, Zubair
    Atoum, Ibrahim A. A.
    Ahmad, Naved
    Shahid, Mohammad
    Ishrat, Mohammad
    Alghamdi, Abdulrahman Abdullah
    [J]. IEEE ACCESS, 2023, 11 : 60681 - 60692
  • [29] LOW-RANK AND SPARSE TENSOR REPRESENTATION FOR MULTI-VIEW SUBSPACE CLUSTERING
    Wang, Shuqin
    Chen, Yongyong
    Cen, Yigang
    Zhang, Linna
    Voronin, Viacheslav
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1534 - 1538
  • [30] Low-Rank Tensor Graph Learning for Multi-View Subspace Clustering
    Chen, Yongyong
    Xiao, Xiaolin
    Peng, Chong
    Lu, Guangming
    Zhou, Yicong
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (01) : 92 - 104