Pontryagin's maximum principle of optimal control problems with time-delay

被引:0
|
作者
Bokov G.V. [1 ]
机构
[1] Moscow State University, Moscow
关键词
Optimal Control Problem; Uniqueness Theorem; Terminal Time; Piecewise Continuous Function; Multiplier Rule;
D O I
10.1007/s10958-011-0208-y
中图分类号
学科分类号
摘要
In this paper, we consider an optimal control problem with time-delay. The state and the control variables contain various constant time-delays. This allows us to represent the necessary conditions in an explicit form. Solution of this problem with infinite terminal time is also given. © 2011 Springer Science+Business Media, Inc.
引用
收藏
页码:623 / 634
页数:11
相关论文
共 50 条
  • [31] Pontryagin's Maximum Principle for Optimal Control of Stochastic SEIR Models
    Xu, Ruimin
    Guo, Rongwei
    COMPLEXITY, 2020, 2020
  • [32] Optimal control using pontryagin's maximum principle and dynamic programming
    Saerens B.
    Diehl M.
    Van Den Bulck E.
    Lecture Notes in Control and Information Sciences, 2010, 402 : 119 - 138
  • [33] Pontryagin's Maximum Principle for Optimal Control of Stochastic SEIR Models
    Xu, Ruimin
    Guo, Rongwei
    Complexity, 2020, 2020
  • [34] Pontryagin’s Maximum Principle for Multidimensional Control Problems in Image Processing
    M. Wagner
    Journal of Optimization Theory and Applications, 2009, 140 : 543 - 576
  • [35] Pontryagin's Maximum Principle for Multidimensional Control Problems in Image Processing
    Wagner, M.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 140 (03) : 543 - 576
  • [36] Ekeland's variational principle and maximum principle of time-delay system
    Liao, WD
    Li, WL
    DIFFERENTIAL EQUATIONS AND CONTROL THEORY, 1996, 176 : 183 - 186
  • [37] MAXIMUM PRINCIPLE FOR SYSTEMS WITH TIME-DELAY
    LALWANI, CS
    DESAI, RC
    INTERNATIONAL JOURNAL OF CONTROL, 1973, 18 (02) : 301 - 304
  • [38] Solution of optimal control problems with time-delay
    Razzaghi, Mohsen
    IIT: 2008 INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION TECHNOLOGY, 2008, : 101 - 104
  • [39] L. S. PONTRYAGIN MAXIMUM PRINCIPLE FOR SOME OPTIMAL CONTROL PROBLEMS BY TRAJECTORIES PENCILS
    Nikolskii, M. S.
    Belyaevskikh, E. A.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2018, 14 (01): : 59 - 68
  • [40] Introduction to the Pontryagin Maximum Principle for Quantum Optimal Control
    Boscain, U.
    Sigalotti, M.
    Sugny, D.
    PRX QUANTUM, 2021, 2 (03):