Pontryagin's maximum principle of optimal control problems with time-delay

被引:0
|
作者
Bokov G.V. [1 ]
机构
[1] Moscow State University, Moscow
关键词
Optimal Control Problem; Uniqueness Theorem; Terminal Time; Piecewise Continuous Function; Multiplier Rule;
D O I
10.1007/s10958-011-0208-y
中图分类号
学科分类号
摘要
In this paper, we consider an optimal control problem with time-delay. The state and the control variables contain various constant time-delays. This allows us to represent the necessary conditions in an explicit form. Solution of this problem with infinite terminal time is also given. © 2011 Springer Science+Business Media, Inc.
引用
下载
收藏
页码:623 / 634
页数:11
相关论文
共 50 条
  • [21] Time-Optimal Tracking Control of Trains Using Pontryagin's Maximum Principle
    Chen Yao
    Dong Hairong
    Guan Fu
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 2392 - 2397
  • [22] The Pontryagin maximum principle and optimal economic growth problems
    Aseev S.M.
    Kryazhimskii A.V.
    Proceedings of the Steklov Institute of Mathematics, 2007, 257 (1) : 1 - 255
  • [23] Pontryagin Maximum Principle for Incommensurate Fractional-Orders Optimal Control Problems
    Ndairou, Faical
    Torres, Delfim F. M.
    MATHEMATICS, 2023, 11 (19)
  • [24] Optimal control of electrical machines using Pontryagin's maximum principle
    Bekir, Wissem
    EL Amraoui, Lilia
    Gillon, Frederic
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2020, 64 : S253 - S267
  • [25] The Pontryagin maximum principle for solving Fokker-Planck optimal control problems
    Breitenbach, Tim
    Borzi, Alfio
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 76 (02) : 499 - 533
  • [26] A new approach to the Pontryagin maximum principle for nonlinear fractional optimal control problems
    Ali, Hegagi M.
    Pereira, Fernando Lobo
    Gama, Silvio M. A.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (13) : 3640 - 3649
  • [27] Stable Sequential Pontryagin Maximum Principle in Optimal Control Problems with Phase Restrictions
    Kuterin F.A.
    Evtushenko A.A.
    Journal of Mathematical Sciences, 2022, 263 (5) : 698 - 709
  • [28] PONTRYAGIN'S MINIMUM PRINCIPLE FOR FUZZY OPTIMAL CONTROL PROBLEMS
    Farhadinia, B.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2014, 11 (02): : 27 - 43
  • [29] Methods of Numerical Solution of Optimal Control Problems Based on the Pontryagin Maximum Principle
    Devadze D.
    Beridze V.
    Journal of Mathematical Sciences, 2015, 206 (4) : 348 - 356
  • [30] Pontryagin maximum principle for state constrained optimal sampled-data control problems on time scales
    Bettiol, Piernicola
    Bourdin, Loic
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27