Assessment of dynamic modulus prediction models in fatigue cracking estimation

被引:0
|
作者
Konstantina Georgouli
Christina Plati
Andreas Loizos
机构
[1] National Technical University of Athens,Laboratory of Pavement Engineering
来源
Materials and Structures | 2016年 / 49卷
关键词
Dynamic modulus; Fatigue cracking; Prediction models; Sensitivity analysis;
D O I
暂无
中图分类号
学科分类号
摘要
The dynamic modulus (E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document}) of Hot Mix Asphalt (HMA) mixtures is a key input parameter in the Mechanistic-Empirical (M-E) pavement design and analysis processes for the prediction of fatigue and rutting damage. The determination of E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document} in the laboratory requires specialized equipment and is an overall time consuming procedure. With this in mind, various prediction models have been developed over the years for the estimation of the E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document}, based on the volumetric properties of the HMA and the binder properties. Flexible pavement design processes require, amongst others, an accurate prediction of the fatigue behavior of the asphalt mixtures. With regards to M-E pavement design, a fatigue model to predict the number of load repetitions to fatigue cracking as a function of the tensile strain and the E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document} of the asphalt mixture is considered. Taking the above into consideration the aim of the present research study is the comparative assessment of the most widely used E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document} prediction models and their impact on the predicted fatigue cracking in the context of M-E pavement design in comparison. Further, the impact of an E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document} prediction model developed through calibration process is also investigated. For this purpose, an asphalt mixture and a pavement structure often implemented in highways of the national transportation network, was selected and fatigue cracking was calculated utilizing both, predicted E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document} and laboratory determined values. Analysis showed that the large bias in the E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document} prediction models is compensated to a certain extend in the final output which is the fatigue cracking. Relevant results from the sensitivity analysis are presented in the paper.
引用
收藏
页码:5007 / 5019
页数:12
相关论文
共 50 条
  • [41] ON LINEAR PREDICTION MODELS CONSTRAINED TO HAVE UNIT-MODULUS POLES AND THEIR USE FOR SINUSOIDAL FREQUENCY ESTIMATION
    STOICA, P
    NEHORAI, A
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1988, 36 (06): : 940 - 942
  • [42] Cracking simulation-based fatigue life assessment
    Farag, Mahmoud M.
    El-Kady, Ramy M.
    Hammouda, Mohammad M. I.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2020, 43 (06) : 1226 - 1238
  • [43] Considering Pavement Structure in Laboratory Fatigue Cracking Assessment
    Saghafi, Mahdi
    Tirado, Cesar
    Abdallah, Imad N.
    Nazarian, Soheil
    INTERNATIONAL CONFERENCE ON TRANSPORTATION AND DEVELOPMENT 2020 - HIGHWAY AND AIRFIELD PAVEMENTS, 2020, : 187 - 199
  • [44] Corrosion fatigue cracking and failure risk assessment of pipelines
    Dmytrakh, Ihor
    SAFETY, RELIABILITY AND RISKS ASSOCIATED WITH WATER, OIL AND GAS PIPELINES, 2008, : 99 - 113
  • [45] Investigating the Effective Laboratory Parameters on the Stiffness Modulus and Fatigue Cracking of Warm Mix Asphalt
    Mazhari Pakenari, Mohammad
    Hamedi, Gholam Hossein
    INTERNATIONAL JOURNAL OF CIVIL ENGINEERING, 2021, 19 (06) : 685 - 698
  • [46] Comparing Artificial Neural Networks with Regression Models for Hot-Mix Asphalt Dynamic Modulus Prediction
    El-Badawy, Sherif
    Abd El-Hakim, Ragaa
    Awed, Ahmed
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2018, 30 (07)
  • [47] Investigating the Effective Laboratory Parameters on the Stiffness Modulus and Fatigue Cracking of Warm Mix Asphalt
    Mohammad Mazhari Pakenari
    Gholam Hossein Hamedi
    International Journal of Civil Engineering, 2021, 19 : 685 - 698
  • [48] Evaluation and calibration of dynamic modulus prediction models of asphalt mixtures for hot climates: Qatar as a case study
    Al-Tawalbeh, Ahmad
    Sirin, Okan
    Sadeq, Mohammed
    Sebaaly, Haissam
    Masad, Eyad
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 17
  • [49] Prediction of notch sensitivity effects in fatigue and in environmentally assisted cracking
    de Castro, J. T. P.
    Landim, R. V.
    Leite, J. C. C.
    Meggiolaro, M. A.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2015, 38 (02) : 161 - 179
  • [50] Improving prediction capabilities of complex dynamic models via parameter selection and estimation
    Chu, Yunfei
    Huang, Zuyi
    Hahn, Juergen
    CHEMICAL ENGINEERING SCIENCE, 2009, 64 (19) : 4178 - 4185