Assessment of dynamic modulus prediction models in fatigue cracking estimation

被引:0
|
作者
Konstantina Georgouli
Christina Plati
Andreas Loizos
机构
[1] National Technical University of Athens,Laboratory of Pavement Engineering
来源
Materials and Structures | 2016年 / 49卷
关键词
Dynamic modulus; Fatigue cracking; Prediction models; Sensitivity analysis;
D O I
暂无
中图分类号
学科分类号
摘要
The dynamic modulus (E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document}) of Hot Mix Asphalt (HMA) mixtures is a key input parameter in the Mechanistic-Empirical (M-E) pavement design and analysis processes for the prediction of fatigue and rutting damage. The determination of E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document} in the laboratory requires specialized equipment and is an overall time consuming procedure. With this in mind, various prediction models have been developed over the years for the estimation of the E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document}, based on the volumetric properties of the HMA and the binder properties. Flexible pavement design processes require, amongst others, an accurate prediction of the fatigue behavior of the asphalt mixtures. With regards to M-E pavement design, a fatigue model to predict the number of load repetitions to fatigue cracking as a function of the tensile strain and the E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document} of the asphalt mixture is considered. Taking the above into consideration the aim of the present research study is the comparative assessment of the most widely used E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document} prediction models and their impact on the predicted fatigue cracking in the context of M-E pavement design in comparison. Further, the impact of an E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document} prediction model developed through calibration process is also investigated. For this purpose, an asphalt mixture and a pavement structure often implemented in highways of the national transportation network, was selected and fatigue cracking was calculated utilizing both, predicted E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document} and laboratory determined values. Analysis showed that the large bias in the E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{*}$$\end{document} prediction models is compensated to a certain extend in the final output which is the fatigue cracking. Relevant results from the sensitivity analysis are presented in the paper.
引用
收藏
页码:5007 / 5019
页数:12
相关论文
共 50 条
  • [31] Estimation of in situ dynamic modulus by using MEPDG dynamic modulus and FWD data at different temperatures
    Seo, Joowon
    Kim, Youngho
    Cho, Jaeyeon
    Jeong, SangSeom
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2013, 14 (04) : 343 - 353
  • [32] Estimation of dynamic modulus of Bitumen Stabilized Mixes
    Nivedya, M. K.
    Murru, Pavitra T.
    Veeraragavan, A.
    Krishnan, J. Murali
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 136 : 202 - 216
  • [33] Dynamic modulus estimation and structural vibration analysis
    Gupta, A
    Khandaswamy, S
    Yellepeddi, S
    Mulcahy, T
    Hull, J
    IMAC - PROCEEDINGS OF THE 17TH INTERNATIONAL MODAL ANALYSIS CONFERENCE, VOLS I AND II, 1999, 3727 : 1423 - 1427
  • [34] Looking to the future: the next-generation hot mix asphalt dynamic modulus prediction models
    Ceylan, Halil
    Gopalakrishnan, Kasthurirangan
    Kim, Sunghwan
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2009, 10 (05) : 341 - 352
  • [35] Development of Prediction Models for Resilient Modulus of Soils
    Fragomeni, Cara
    Hedayat, Ahmadreza
    Navidi, William
    Kuhn, Evan
    Thomas, David
    Perkins, Melody
    ROCKY MOUNTAIN GEO-CONFERENCE 2021, 2021, 13 : 42 - 55
  • [36] PREDICTION MODELS OF RESILIENT MODULUS FOR NONGRANULAR MATERIALS
    PEZO, R
    HUDSON, WR
    GEOTECHNICAL TESTING JOURNAL, 1994, 17 (03): : 349 - 355
  • [37] Fracture mechanics models for short crack growth estimation and fatigue strength assessment
    Daniel Chapetti, Mirco
    MATERIA-RIO DE JANEIRO, 2022, 27 (03):
  • [38] VALIDATION OF FATIGUE MODELS FOR ERW SEAM WELD CRACKING
    Young, Bruce A.
    Olson, Richard J.
    O'Brian, Jennifer M.
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, 2017, VOL 6B, 2017,
  • [39] Modulus prediction of asphalt mixtures using dynamic semicircular bending test: Estimation algorithm and nomograph development
    Saha, Gourab
    Biligiri, Krishna Prapoorna
    INTERNATIONAL JOURNAL OF FATIGUE, 2018, 109 : 137 - 144
  • [40] On the use of Normalised Modulus for estimation of fatigue life of asphalt mixtures
    Varma, K. Remya
    Krishnan, J. Murali
    Bahia, H. U.
    FUNCTIONAL PAVEMENT DESIGN, 2016, : 74 - 74