Non-linear Schrödinger equation with non-local regional diffusion

被引:0
|
作者
Patricio Felmer
César Torres
机构
[1] Universidad de Chile,Departamento de Ingeniería Matemática and Centro de Modelamiento, Matemático UMR2071 CNRS
关键词
45G05; 35J60; 35B25;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we are interested in the nonlinear Schrödinger equation with non-local regional difussion ϵ2α(-Δ)ραu+u=f(u)inRn,u∈Hα(Rn),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&\epsilon ^{2\alpha } (-\Delta )_{\rho }^{\alpha }u + u = f(u) \hbox { in } \mathbb {R}^{n}, \\&u \in H^{\alpha }(\mathbb {R}^{n}), \end{aligned}$$\end{document}where f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} is a super-linear sub-critical function and (-Δ)ρα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )_{\rho }^{\alpha }$$\end{document} is a variational version of the regional laplacian, whose range of scope is a ball with radius ρ(x)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (x)>0$$\end{document}. We study the existence of a ground state and we analyze the behavior of semi-classical solutions as ε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \rightarrow 0$$\end{document}.
引用
收藏
页码:75 / 98
页数:23
相关论文
共 50 条
  • [21] Damped Non-linear Coupled Schrödinger Equations
    Tarek Saanouni
    [J]. Complex Analysis and Operator Theory, 2019, 13 : 1093 - 1110
  • [22] The Non-linear Schrödinger Equation and the Conformal Properties of Non-relativistic Space-Time
    P. A. Horváthy
    J.-C. Yera
    [J]. International Journal of Theoretical Physics, 2009, 48 : 3139 - 3146
  • [23] On the decomposition method to the heat equation with non-linear and non-local boundary conditions
    Hadizadeh, M
    Maleknejad, K
    [J]. KYBERNETES, 1998, 27 (4-5) : 426 - +
  • [24] Non-local non-linear sigma models
    Gubser, Steven S.
    Jepsen, Christian B.
    Ji, Ziming
    Trundy, Brian
    Yarom, Amos
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (09)
  • [25] Non-local non-linear sigma models
    Steven S. Gubser
    Christian B. Jepsen
    Ziming Ji
    Brian Trundy
    Amos Yarom
    [J]. Journal of High Energy Physics, 2019
  • [26] PT-invariant generalised non-local nonlinear Schrödinger equation: soliton solutions
    Das, Nirmoy Kumar
    Barman, Dhanashri
    Das, Ashoke
    Aman, Towhid E.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2024, 98 (04):
  • [27] Soliton solutions to a reverse-time non-local nonlinear Schrödinger differential equation
    Qiaofeng Huang
    Chenzhi Ruan
    Zishan Huang
    Jiaxing Huang
    [J]. Pramana, 97
  • [28] Decay Estimates and Smoothness for Solutions of the Dispersion Managed Non-linear Schrödinger Equation
    Dirk Hundertmark
    Young-Ran Lee
    [J]. Communications in Mathematical Physics, 2009, 286 : 851 - 873
  • [29] Localization in the Discrete Non-linear Schrödinger Equation and Geometric Properties of the Microcanonical Surface
    Claudio Arezzo
    Federico Balducci
    Riccardo Piergallini
    Antonello Scardicchio
    Carlo Vanoni
    [J]. Journal of Statistical Physics, 2022, 186
  • [30] Integrable local and non-local vector Non-linear Schrodinger Equation with balanced loss and gain
    Sinha, Debdeep
    [J]. PHYSICS LETTERS A, 2022, 448