Non-local non-linear sigma models

被引:0
|
作者
Steven S. Gubser
Christian B. Jepsen
Ziming Ji
Brian Trundy
Amos Yarom
机构
[1] Princeton University,Joseph Henry Laboratories
[2] Department of Physics,undefined
[3] Technion,undefined
关键词
Renormalization Group; Sigma Models; M-Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We study non-local non-linear sigma models in arbitrary dimension, focusing on the scale invariant limit in which the scalar fields naturally have scaling dimension zero, so that the free propagator is logarithmic. The classical action is a bi-local integral of the square of the arc length between points on the target manifold. One-loop divergences can be canceled by introducing an additional bi-local term in the action, proportional to the target space laplacian of the square of the arc length. The metric renormalization that one encounters in the two-derivative non-linear sigma model is absent in the non-local case. In our analysis, the target space manifold is assumed to be smooth and Archimedean; however, the base space may be either Archimedean or ultrametric. We comment on the relation to higher derivative non-linear sigma models and speculate on a possible application to the dynamics of M2-branes.
引用
收藏
相关论文
共 50 条
  • [1] Non-local non-linear sigma models
    Gubser, Steven S.
    Jepsen, Christian B.
    Ji, Ziming
    Trundy, Brian
    Yarom, Amos
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (09)
  • [2] NON-LOCAL CHARGES FOR NON-LINEAR SIGMA-MODELS ON GRASSMANN MANIFOLDS
    ABDALLA, E
    FORGER, M
    SANTOS, AL
    [J]. NUCLEAR PHYSICS B, 1985, 256 (01) : 145 - 180
  • [3] Non-linear non-local Cosmology
    Nunes, N. J.
    Mulryne, D. J.
    [J]. DARK SIDE OF THE UNIVERSE, 2009, 1115 : 329 - 334
  • [4] On displacement based non-local models for non-linear vibrations of thin nano plates
    Chuaqui, Tomas R. C.
    Ribeiro, Pedro
    [J]. INTERNATIONAL CONFERENCE ON ENGINEERING VIBRATION (ICOEV 2017), 2018, 148
  • [5] CONVERGENT FIELD THEORY WITH NON-LINEAR NON-LOCAL INTERACTION
    YAMAMOTO, H
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1968, 40 (05): : 1143 - &
  • [6] Non-linear Schrodinger equation with non-local regional diffusion
    Felmer, Patricio
    Torres, Cesar
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) : 75 - 98
  • [7] NON-LOCAL PROBLEM WITH NON-LINEAR CONDITIONS FOR A HYPERBOLIC EQUATION
    Dmitriev, V. B.
    [J]. VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2009, (01): : 26 - 32
  • [8] Non-linear and non-local behaviour in spontaneously electrical solids
    Roman, M.
    Taj, S.
    Gutowski, M.
    McCoustra, M. R. S.
    Dunn, A. C.
    Keolopile, Z. G.
    Rosu-Finsen, A.
    Cassidy, A. M.
    Field, D.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (07) : 5112 - 5116
  • [9] Holographic photopolymer materials with non-local and non-linear responses
    Kelly, JV
    O'Neill, FT
    Sheridan, JT
    Neipp, C
    Gallego, S
    Ortuno, M
    [J]. ORGANIC HOLOGRAPHIC MATERIALS AND APPLICATIONS, 2003, 5216 : 127 - 138
  • [10] Exploration of non-linear and non-local strain gradient model
    Wang, Zhong-Chang
    Luan, Mao-Tian
    Yang, Qing
    [J]. Dalian Ligong Daxue Xuebao/Journal of Dalian University of Technology, 2007, 47 (01): : 68 - 72