Infinitely Many Homoclinic Solutions for a Class of Indefinite Perturbed Second-Order Hamiltonian Systems

被引:0
|
作者
Liang Zhang
Xianhua Tang
Yi Chen
机构
[1] University of Jinan,School of Mathematical Sciences
[2] Central South University,School of Mathematics and Statistics
[3] China University of Mining and Technology,Department of Mathematics
来源
关键词
Bolle’s perturbation method; broken symmetry; perturbed Hamiltonian system; homoclinic solutions; Primary 34C37; Secondary 37J45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence of infinitely many homoclinic solutions of the perturbed second-order Hamiltonian system -u¨(t)+L(t)u=Wu(t,u(t))+Gu(t,u(t)),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\ddot{u}(t)+L(t)u=W_u(t,u(t))+G_u(t,u(t)),$$\end{document}where L(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L(t)}$$\end{document} and W(t,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W(t,u)}$$\end{document} are neither autonomous nor periodic in t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${t}$$\end{document}. Under the assumptions that W(t,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W(t,u)}$$\end{document} is indefinite in sign and only locally superquadratic as |u|→+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|u|\to +\infty}$$\end{document} and G(t,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G(t,u)}$$\end{document} is not even in u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u}$$\end{document}, we prove the existence of infinitely many homoclinic solutions in spite of the lack of the symmetry of this problem by Bolle’s perturbation method in critical point theory. Our results generalize some known results and are even new in the symmetric case.
引用
下载
收藏
页码:3673 / 3690
页数:17
相关论文
共 50 条