In this paper, we study the existence of infinitely many homoclinic solutions of the perturbed second-order Hamiltonian system
-u¨(t)+L(t)u=Wu(t,u(t))+Gu(t,u(t)),\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-\ddot{u}(t)+L(t)u=W_u(t,u(t))+G_u(t,u(t)),$$\end{document}where L(t)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${L(t)}$$\end{document} and W(t,u)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${W(t,u)}$$\end{document} are neither autonomous nor periodic in t\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${t}$$\end{document}. Under the assumptions that W(t,u)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${W(t,u)}$$\end{document} is indefinite in sign and only locally superquadratic as |u|→+∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${|u|\to +\infty}$$\end{document} and G(t,u)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${G(t,u)}$$\end{document} is not even in u\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${u}$$\end{document}, we prove the existence of infinitely many homoclinic solutions in spite of the lack of the symmetry of this problem by Bolle’s perturbation method in critical point theory. Our results generalize some known results and are even new in the symmetric case.
机构:
Anhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R ChinaAnhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R China
Lv, Xiang
Lu, Shiping
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R ChinaAnhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R China
Lu, Shiping
Yan, Ping
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R China
Univ Helsinki, Dept Math & Stat, Rolf Nevanlinna Inst, FIN-00014 Helsinki, FinlandAnhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R China
机构:
Jishou Univ, Coll Math & Stat, Jishou 416000, Hunan, Peoples R China
Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R ChinaJishou Univ, Coll Math & Stat, Jishou 416000, Hunan, Peoples R China
Xie, Jingli
Luo, Zhiguo
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R ChinaJishou Univ, Coll Math & Stat, Jishou 416000, Hunan, Peoples R China
Luo, Zhiguo
Chen, Guoping
论文数: 0引用数: 0
h-index: 0
机构:
Jishou Univ, Coll Math & Stat, Jishou 416000, Hunan, Peoples R ChinaJishou Univ, Coll Math & Stat, Jishou 416000, Hunan, Peoples R China
机构:
Liaocheng Univ, Sch Math Sci, Liaocheng 252000, Shandong, Peoples R China
Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Jilin, Peoples R ChinaLiaocheng Univ, Sch Math Sci, Liaocheng 252000, Shandong, Peoples R China
Liu, Guanggang
Li, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Jilin, Peoples R China
Jilin Univ, Coll Math, Changchun 130012, Jilin, Peoples R ChinaLiaocheng Univ, Sch Math Sci, Liaocheng 252000, Shandong, Peoples R China
Li, Yong
Yang, Xue
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Jilin, Peoples R China
Jilin Univ, Coll Math, Changchun 130012, Jilin, Peoples R ChinaLiaocheng Univ, Sch Math Sci, Liaocheng 252000, Shandong, Peoples R China