Infinitely Many Homoclinic Solutions for a Class of Indefinite Perturbed Second-Order Hamiltonian Systems

被引:0
|
作者
Liang Zhang
Xianhua Tang
Yi Chen
机构
[1] University of Jinan,School of Mathematical Sciences
[2] Central South University,School of Mathematics and Statistics
[3] China University of Mining and Technology,Department of Mathematics
来源
关键词
Bolle’s perturbation method; broken symmetry; perturbed Hamiltonian system; homoclinic solutions; Primary 34C37; Secondary 37J45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence of infinitely many homoclinic solutions of the perturbed second-order Hamiltonian system -u¨(t)+L(t)u=Wu(t,u(t))+Gu(t,u(t)),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\ddot{u}(t)+L(t)u=W_u(t,u(t))+G_u(t,u(t)),$$\end{document}where L(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L(t)}$$\end{document} and W(t,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W(t,u)}$$\end{document} are neither autonomous nor periodic in t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${t}$$\end{document}. Under the assumptions that W(t,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W(t,u)}$$\end{document} is indefinite in sign and only locally superquadratic as |u|→+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|u|\to +\infty}$$\end{document} and G(t,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G(t,u)}$$\end{document} is not even in u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u}$$\end{document}, we prove the existence of infinitely many homoclinic solutions in spite of the lack of the symmetry of this problem by Bolle’s perturbation method in critical point theory. Our results generalize some known results and are even new in the symmetric case.
引用
下载
收藏
页码:3673 / 3690
页数:17
相关论文
共 50 条
  • [21] Infinitely many periodic solutions for a class of new superquadratic second-order Hamiltonian systems
    Li, Chun
    Agarwal, Ravi P.
    Pasca, Daniel
    APPLIED MATHEMATICS LETTERS, 2017, 64 : 113 - 118
  • [22] Existence of homoclinic solutions for a class of second-order Hamiltonian systems
    Lv, Xiang
    Lu, Shiping
    Yan, Ping
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (01) : 390 - 398
  • [23] Homoclinic Solutions for a Class of the Second-Order Impulsive Hamiltonian Systems
    Xie, Jingli
    Luo, Zhiguo
    Chen, Guoping
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [24] Homoclinic solutions for a class of subquadratic second-order Hamiltonian systems
    Sun, Juntao
    Chen, Haibo
    Nieto, Juan J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (01) : 20 - 29
  • [25] Infinitely many homoclinic solutions for a second-order Hamiltonian system with locally defined potentials
    Wang, Xiaoping
    CHAOS SOLITONS & FRACTALS, 2016, 87 : 47 - 50
  • [26] Infinitely many periodic solutions for subquadratic second-order Hamiltonian systems
    Hua Gu
    Tianqing An
    Boundary Value Problems, 2013
  • [27] INFINITELY MANY FAST HOMOCLINIC SOLUTIONS FOR SOME SECOND-ORDER NONAUTONOMOUS SYSTEMS
    Yang, Liu
    Luo, Liping
    Luo, Zhenguo
    UKRAINIAN MATHEMATICAL JOURNAL, 2014, 66 (03) : 454 - 466
  • [28] Infinitely many periodic solutions for subquadratic second-order Hamiltonian systems
    Gu, Hua
    An, Tianqing
    BOUNDARY VALUE PROBLEMS, 2013,
  • [29] Infinitely Many Rotating Periodic Solutions for Second-Order Hamiltonian Systems
    Liu, Guanggang
    Li, Yong
    Yang, Xue
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2019, 25 (02) : 159 - 174
  • [30] EXISTENCE OF INFINITELY MANY PERIODIC SOLUTIONS FOR SECOND-ORDER HAMILTONIAN SYSTEMS
    Gu, Hua
    An, Tianqing
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,