Infinitely many homoclinic solutions for a class of subquadratic second-order Hamiltonian systems

被引:4
|
作者
Lv, Xiang [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
Homoclinic solutions; Hamiltonian systems; Variational methods; ORBITS;
D O I
10.1016/j.amc.2016.06.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we mainly consider the existence of infinitely many homoclinic solutions for a class of subquadratic second-order Hamiltonian systems (u) over dot - L (t) u + W-u (t, u) = 0, where L (t) is not necessarily positive definite and the growth rate of potential function W can be in (1, 3/2). Using the variant fountain theorem, we obtain the existence of infinitely many homoclinic solutions for the second-order Hamiltonian systems. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:298 / 306
页数:9
相关论文
共 50 条