Faster search of clustered marked states with lackadaisical quantum walks

被引:0
|
作者
Amit Saha
Ritajit Majumdar
Debasri Saha
Amlan Chakrabarti
Susmita Sur-Kolay
机构
[1] University of Calcutta,A. K. Choudhury School of Information Technology
[2] Atos,Advanced Computing and Microelectronics Unit
[3] Indian Statistical Institute,undefined
关键词
Lackadaisical quantum walks; Multiple marked state; Quantum walks; Clustered-marked states;
D O I
暂无
中图分类号
学科分类号
摘要
The nature of discrete-time quantum walks in the presence of multiple marked states can be found in the literature. An exceptional configuration of clustered marked states, which is a variant of multiple marked states, may be defined as a cluster of k marked states arranged in a k×k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{k} \times \sqrt{k}$$\end{document} array within a N×N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{N} \times \sqrt{N}$$\end{document} grid, where k=n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=n^{2}$$\end{document} and n an odd integer. In this article, we establish through numerical simulation that for lackadaisical quantum walks, which is the analogue of a three-state discrete-time quantum walks on a line, the success probability to find a vertex in the marked region of this exceptional configuration is nearly 1 with smaller run-time. We also show that the weights of the self-loop suggested for multiple marked states in the state-of-the-art works are not optimal for this exceptional configuration of clustered marked states. We propose a weight of the self-loop which gives the desired result for this configuration.
引用
收藏
相关论文
共 50 条
  • [11] One-dimensional lackadaisical quantum walks
    Wang, Kun
    Wu, Nan
    Xu, Ping
    Song, Fangmin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (50)
  • [12] Lackadaisical quantum walk for spatial search
    Giri, Pulak Ranjan
    Korepin, Vladimir
    MODERN PHYSICS LETTERS A, 2020, 35 (08)
  • [13] Search by lackadaisical quantum walk with symmetry breaking
    Rapoza, Jacob
    Wong, Thomas G.
    PHYSICAL REVIEW A, 2021, 104 (06)
  • [14] Improvement of quantum walks search algorithm in single-marked vertex graph
    Li, Xinying
    Shang, Yun
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (38)
  • [15] Coins Make Quantum Walks Faster
    Ambainis, Andris
    Kempe, Julia
    Rivosh, Alexander
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 1099 - 1108
  • [16] Search algorithm on strongly regular graph by lackadaisical quantum walk
    Peng, Fangjie
    Li, Meng
    Sun, Xiaoming
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (13)
  • [17] Search on vertex-transitive graphs by lackadaisical quantum walk
    Mason L. Rhodes
    Thomas G. Wong
    Quantum Information Processing, 2020, 19
  • [18] Search on vertex-transitive graphs by lackadaisical quantum walk
    Rhodes, Mason L.
    Wong, Thomas G.
    QUANTUM INFORMATION PROCESSING, 2020, 19 (09)
  • [19] Quantum walks with multiple or moving marked locations
    Ambairlis, Andris
    Rivosh, Alexander
    SOFSEM 2008: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2008, 4910 : 485 - 496
  • [20] Discrete Quantum Walks Hit Exponentially Faster
    Julia Kempe
    Probability Theory and Related Fields, 2005, 133 : 215 - 235