Search on vertex-transitive graphs by lackadaisical quantum walk

被引:10
|
作者
Rhodes, Mason L. [1 ]
Wong, Thomas G. [1 ]
机构
[1] Creighton Univ, Dept Phys, 2500 Calif Plaza, Omaha, NE 68178 USA
关键词
Quantum walk; Lackadaisical quantum walk; Quantum search; Spatial search; Vertex transitive graph;
D O I
10.1007/s11128-020-02841-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The lackadaisical quantum walk is a discrete-time, coined quantum walk on a graph with a weighted self-loop at each vertex. It uses a generalized Grover coin and the flip-flop shift, which makes it equivalent to Szegedy's quantum Markov chain. It has been shown that a lackadaisical quantum walk can improve spatial search on the complete graph, discrete torus, cycle, and regular complete bipartite graph. In this paper, we observe that these are all vertex-transitive graphs, and when there is a unique marked vertex, the optimal weight of the self-loop equals the degree of the loopless graph divided by the total number of vertices. We propose that this holds for all vertex-transitive graphs with a unique marked vertex. We present a number of numerical simulations supporting this hypothesis, including search on periodic cubic lattices of arbitrary dimension, strongly regular graphs, Johnson graphs, and the hypercube.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Search on vertex-transitive graphs by lackadaisical quantum walk
    Mason L. Rhodes
    Thomas G. Wong
    [J]. Quantum Information Processing, 2020, 19
  • [2] VERTEX-TRANSITIVE GRAPHS AND VERTEX-TRANSITIVE MAPS
    BABAI, L
    [J]. JOURNAL OF GRAPH THEORY, 1991, 15 (06) : 587 - 627
  • [3] QUANTUM AND RANDOMIZED LOWER BOUNDS FOR LOCAL SEARCH ON VERTEX-TRANSITIVE GRAPHS
    Dinh, Hang
    Russell, Alexander
    [J]. QUANTUM INFORMATION & COMPUTATION, 2010, 10 (7-8) : 636 - 652
  • [4] Quantum and Randomized Lower Bounds for Local Search on Vertex-Transitive Graphs
    Dinh, Hang
    Russell, Alexander
    [J]. APPROXIMATION RANDOMIZATION AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, PROCEEDINGS, 2008, 5171 : 385 - 401
  • [5] VERTEX-TRANSITIVE GRAPHS AND ACCESSIBILITY
    THOMASSEN, C
    WOESS, W
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1993, 58 (02) : 248 - 268
  • [6] EXCESS IN VERTEX-TRANSITIVE GRAPHS
    BIGGS, NL
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1982, 14 (JAN) : 52 - 54
  • [7] Vertex-transitive graphs and digraphs
    Scapellato, R
    [J]. GRAPH SYMMETRY: ALGEBRAIC METHODS AND APPLICATIONS, 1997, 497 : 319 - 378
  • [8] A CONSTRUCTION FOR VERTEX-TRANSITIVE GRAPHS
    ALSPACH, B
    PARSONS, TD
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1982, 34 (02): : 307 - 318
  • [9] Vertex-transitive CIS graphs
    Dobson, Edward
    Hujdurovic, Ademir
    Milanic, Martin
    Verret, Gabriel
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2015, 44 : 87 - 98
  • [10] Limits of vertex-transitive graphs
    Giudici, Michael
    Li, Cai Heng
    Praeger, Cheryl E.
    Seress, Akos
    Trofimov, Vladimir
    [J]. ISCHIA GROUP THEORY 2004, PROCEEDINGS, 2006, 402 : 159 - +