Search on vertex-transitive graphs by lackadaisical quantum walk

被引:10
|
作者
Rhodes, Mason L. [1 ]
Wong, Thomas G. [1 ]
机构
[1] Creighton Univ, Dept Phys, 2500 Calif Plaza, Omaha, NE 68178 USA
关键词
Quantum walk; Lackadaisical quantum walk; Quantum search; Spatial search; Vertex transitive graph;
D O I
10.1007/s11128-020-02841-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The lackadaisical quantum walk is a discrete-time, coined quantum walk on a graph with a weighted self-loop at each vertex. It uses a generalized Grover coin and the flip-flop shift, which makes it equivalent to Szegedy's quantum Markov chain. It has been shown that a lackadaisical quantum walk can improve spatial search on the complete graph, discrete torus, cycle, and regular complete bipartite graph. In this paper, we observe that these are all vertex-transitive graphs, and when there is a unique marked vertex, the optimal weight of the self-loop equals the degree of the loopless graph divided by the total number of vertices. We propose that this holds for all vertex-transitive graphs with a unique marked vertex. We present a number of numerical simulations supporting this hypothesis, including search on periodic cubic lattices of arbitrary dimension, strongly regular graphs, Johnson graphs, and the hypercube.
引用
下载
收藏
页数:16
相关论文
共 50 条
  • [21] Vertex-transitive Diameter Two Graphs
    Wei Jin
    Li Tan
    Acta Mathematicae Applicatae Sinica, English Series, 2022, 38 : 209 - 222
  • [22] THE MAXIMUM GENUS OF VERTEX-TRANSITIVE GRAPHS
    SKOVIERA, M
    NEDELA, R
    DISCRETE MATHEMATICS, 1989, 78 (1-2) : 179 - 186
  • [23] LONG CYCLES IN VERTEX-TRANSITIVE GRAPHS
    BABAI, L
    JOURNAL OF GRAPH THEORY, 1979, 3 (03) : 301 - 304
  • [24] MATCHINGS IN VERTEX-TRANSITIVE BIPARTITE GRAPHS
    Csikvari, Peter
    ISRAEL JOURNAL OF MATHEMATICS, 2016, 215 (01) : 99 - 134
  • [25] A Note on Vertex-transitive Kahler graphs
    Tuerxunmaimaiti, Yaermaimaiti
    Adachi, Toshiaki
    HOKKAIDO MATHEMATICAL JOURNAL, 2016, 45 (03) : 419 - 433
  • [26] ON ISOMORPHISMS OF VERTEX-TRANSITIVE CUBIC GRAPHS
    Fi, Jing Chen
    Li, Cai Heng
    Liu, Wei Jun
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 99 (03) : 341 - 349
  • [27] DISTANCE DEGREES OF VERTEX-TRANSITIVE GRAPHS
    HILANO, T
    GRAPHS AND COMBINATORICS, 1989, 5 (03) : 223 - 228
  • [28] Perfect codes in vertex-transitive graphs
    Wang, Yuting
    Zhang, Junyang
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2023, 196
  • [29] STRUCTURE OF FINITE VERTEX-TRANSITIVE GRAPHS
    GREEN, AC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A37 - A37
  • [30] On orders of automorphisms of vertex-transitive graphs
    Potocnik, Primoz
    Toledo, Micael
    Verret, Gabriel
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 166 : 123 - 153