Asymmetric Quantum Stackelberg Duopoly Game Based on Isoelastic Demand

被引:0
|
作者
Yangmei Zhong
Lian Shi
Feng Xu
机构
[1] Anhui University of Finance & Economics,School of Accountancy
[2] Anhui University of Finance & Economics,School of Finance
[3] Nanjing University,School of Management and Engineering
关键词
Quantum Stackelberg duopoly; Asymmetric quantization scheme; Isoelastic demand function; Different marginal costs;
D O I
暂无
中图分类号
学科分类号
摘要
A quantum Stackelberg duopoly with isoelastic demand is proposed by using Qin et al.’s asymmetric quantization scheme. The existed conditions of quantum equilibrium are investigated, constituted by three parameters: the relative marginal cost m, and two different entanglement factors γ and α. On this basis, the impacts of γ and α on the leader’s and the follower’s optimal profits u1∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {u}_1^{\ast } $$\end{document} and u2∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {u}_2^{\ast } $$\end{document}, the first-mover advantage δu∗ and the total product quantity Q∗ are analyzed. A positive γ will increase u1∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {u}_1^{\ast } $$\end{document} and u2∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {u}_2^{\ast } $$\end{document}, reduce Q∗, and, depending on m, increase or reduce δu∗. Nevertheless, the influences of α are exactly the opposite. The results of the asymmetric Stackelberg duopoly with isoelastic demand are different from the case with linear demand. To better manage the market, one should consider the market structure besides choose proper entanglement factors.
引用
收藏
相关论文
共 50 条
  • [31] Quantum Stackelberg–Bertrand duopoly
    C. F. Lo
    C. F. Yeung
    [J]. Quantum Information Processing, 2020, 19
  • [32] New Phenomenons Induced by Quantum Discord and the Initial State Parameter in the Quantum Stackelberg Duopoly Game
    Lan Xu
    [J]. International Journal of Theoretical Physics, 2021, 60 : 2244 - 2253
  • [33] Dynamic Cournot oligopoly game based on general isoelastic demand
    Andaluz, J.
    Elsadany, A.
    Jarne, G.
    [J]. NONLINEAR DYNAMICS, 2020, 99 (02) : 1053 - 1063
  • [34] New Phenomenons Induced by Quantum Discord and the Initial State Parameter in the Quantum Stackelberg Duopoly Game
    Xu, Lan
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (06) : 2244 - 2253
  • [35] Stackelberg leadership with demand uncertainty in a differentiated duopoly
    Ferreira, FA
    Ferreira, F
    Pinto, A
    [J]. PROCEEDINGS OF THE 25TH IASTED INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION, AND CONTROL, 2006, : 408 - 410
  • [36] Quantum Stackelberg duopoly with incomplete information
    Lo, CF
    Kiang, D
    [J]. PHYSICS LETTERS A, 2005, 346 (1-3) : 65 - 70
  • [37] Dynamic Cournot oligopoly game based on general isoelastic demand
    J. Andaluz
    A. A. Elsadany
    G. Jarne
    [J]. Nonlinear Dynamics, 2020, 99 : 1053 - 1063
  • [38] Quantum Stackelberg Duopoly in a Noninertial Frame
    Khan, Salman
    Khan, M. Khalid
    [J]. CHINESE PHYSICS LETTERS, 2011, 28 (07)
  • [39] Quantum Stackelberg-Bertrand duopoly
    Lo, C. F.
    Yeung, C. F.
    [J]. QUANTUM INFORMATION PROCESSING, 2020, 19 (10)
  • [40] Heterogeneous triopoly game with isoelastic demand function
    Fabio Tramontana
    Abd Elalim Abdo Elsadany
    [J]. Nonlinear Dynamics, 2012, 68 : 187 - 193