Coherent branched flow in a two-dimensional electron gas

被引:0
|
作者
M. A. Topinka
B. J. LeRoy
R. M. Westervelt
S. E. J. Shaw
R. Fleischmann
E. J. Heller
K. D. Maranowski
A. C. Gossard
机构
[1] Division of Engineering and Applied Sciences,Department of Chemistry and Chemical Biology
[2] Department of Physics,Materials Department
[3] Harvard University,undefined
[4] Max-Planck-Institut für Strömungsforschung,undefined
[5] University of California,undefined
来源
Nature | 2001年 / 410卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Semiconductor nanostructures based on two-dimensional electron gases (2DEGs) could form the basis of future devices for sensing, information processing and quantum computation. Although electron transport in 2DEG nanostructures has been well studied, and many remarkable phenomena have already been discovered (for example, weak localization, quantum chaos, universal conductance fluctuations1,2), fundamental aspects of the electron flow through these structures have so far not been clarified. However, it has recently become possible to image current directly through 2DEG devices using scanning probe microscope techniques3,4,5,6,7,8,9,10,11,12,13. Here, we use such a technique to observe electron flow through a narrow constriction in a 2DEG—a quantum point contact. The images show that the electron flow from the point contact forms narrow, branching strands instead of smoothly spreading fans. Our theoretical study of this flow indicates that this branching of current flux is due to focusing of the electron paths by ripples in the background potential. The strands are decorated by interference fringes separated by half the Fermi wavelength, indicating the persistence of quantum mechanical phase coherence in the electron flow. These findings may have important implications for a better understanding of electron transport in 2DEGs and for the design of future nanostructure devices.
引用
收藏
页码:183 / 186
页数:3
相关论文
共 50 条
  • [31] Hopf term for a two-dimensional electron gas
    Volovik, GE
    Yakovenko, VM
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (19) : 3791 - 3791
  • [32] Superconducting contacts to a two-dimensional electron gas
    Williams, DA
    Moore, TD
    Newcomb, SB
    [J]. MICROSCOPY OF SEMICONDUCTING MATERIALS 1999, PROCEEDINGS, 1999, (164): : 557 - 560
  • [33] Electronic Refrigeration of a Two-Dimensional Electron Gas
    Prance, J. R.
    Smith, C. G.
    Griffiths, J. P.
    Chorley, S. J.
    Anderson, D.
    Jones, G. A. C.
    Farrer, I.
    Ritchie, D. A.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (14)
  • [34] Ultrafast spectroscopy of a two-dimensional electron gas
    Woerner, A
    Shih, T
    Luo, CW
    Reimann, K
    Elsaesser, T
    Waldmüller, I
    Knorr, A
    Hey, R
    Ploog, KH
    [J]. 2004 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2004, : 451 - 452
  • [35] Multipair excitations in the two-dimensional electron gas
    Pederiva, F
    Emperador, A
    Lipparini, E
    [J]. PHYSICAL REVIEW B, 2002, 66 (15) : 1 - 4
  • [36] Dislocation scattering in a two-dimensional electron gas
    Jena, D
    Gossard, AC
    Mishra, UK
    [J]. APPLIED PHYSICS LETTERS, 2000, 76 (13) : 1707 - 1709
  • [37] Flicker noise in two-dimensional electron gas
    Najafi, M. N.
    Tizdast, S.
    Moghaddam, Z.
    Samadpour, M.
    [J]. PHYSICA SCRIPTA, 2021, 96 (12)
  • [38] Cooking a two-dimensional electron gas with microwaves
    Durst, AC
    Girvin, SM
    [J]. SCIENCE, 2004, 304 (5678) : 1752 - 1753
  • [39] Hall effect in a two-dimensional electron gas
    Figarova, S. R.
    Figarov, V. R.
    [J]. PHILOSOPHICAL MAGAZINE LETTERS, 2007, 87 (06) : 373 - 378
  • [40] Microwave absorption of a two-dimensional electron gas
    Fedorych, O. M.
    Moreau, S.
    Byszewski, M.
    Sadowski, M. L.
    Potemski, M.
    Studenikin, S.
    Wasilewski, Z. R.
    [J]. PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 583 - +