Rapid mass segregation in small stellar clusters

被引:0
|
作者
Mario Spera
Roberto Capuzzo-Dolcetta
机构
[1] Universitá degli Studi di Milano Bicocca,Department of Physics
[2] Universität Innsbruck,Institut für Astro
[3] Sapienza, und Teilchenphysik
[4] Universitá di Roma,Department of Physics
来源
关键词
Methods: numerical; Galaxies: star clusters: general; Galaxies: kinematics and dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we focus our attention on small-to-intermediate N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document}-body systems that are, initially, distributed uniformly in space and dynamically ‘cool’ (virial ratios Q=2T/|Ω|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q=2T/|\varOmega|$\end{document} below ∼0.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sim0.3$\end{document}). In this work, we study the mass segregation that emerges after the initial violent dynamical evolution. At this scope, we ran a set of high precision N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document}-body simulations of isolated clusters by means of HiGPUs, our direct summation N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document}-body code. After the collapse, the system shows a clear mass segregation. This (quick) mass segregation occurs in two phases: the first shows up in clumps originated by sub-fragmentation before the deep overall collapse; this segregation is partly erased during the deep collapse to re-emerge, abruptly, during the second phase, that follows the first bounce of the system. In this second stage, the proper clock to measure the rate of segregation is the dynamical time after virialization, which (for cold and cool systems) may be significantly different from the crossing time evaluated from initial conditions. This result is obtained for isolated clusters composed of stars of two different masses (in the ratio mh/ml=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m_{h}/m_{l}=2$\end{document}), at varying their number ratio, and is confirmed also in presence of a massive central object (simulating a black hole of stellar size). Actually, in stellar systems starting their dynamical evolution from cool conditions, the fast mass segregation adds to the following, slow, secular segregation which is collisionally induced. The violent mass segregation is an effect persistent over the whole range of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document} (128≤N≤1,024\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$128 \leq N \leq1\mbox{,}024$\end{document}) investigated, and is an interesting feature on the astronomical-observational side, too. The semi-steady state reached after virialization corresponds to a mass segregated distribution function rather than that of equipartition of kinetic energy per unit mass as it should result from violent relaxation.
引用
收藏
相关论文
共 50 条
  • [31] Mass segregation of embedded clusters in the Milky Way
    Er, Xin-Yue
    Jiang, Zhi-Bo
    Fu, Yan-Ning
    [J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2013, 13 (03) : 277 - 289
  • [32] Mass segregation in very young open clusters
    Raboud, D
    [J]. WORKSHOP ON HOT STARS IN OPEN CLUSTERS OF THE GALAXY AND THE MAGELLANIC CLOUDS, 1999, 8 : 107 - 110
  • [33] Limits on initial mass segregation in young clusters
    Moeckel, Nickolas
    Bonnell, Ian A.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 396 (04) : 1864 - 1874
  • [34] CORE RADII AND MASS SEGREGATION IN CLUSTERS OF GALAXIES
    QUINTANA, H
    [J]. ASTRONOMICAL JOURNAL, 1979, 84 (01): : 15 - &
  • [35] Mass segregation in star clusters is not energy equipartition
    Parker, Richard J.
    Goodwin, Simon P.
    Wright, Nicholas J.
    Meyer, Michael R.
    Quanz, Sascha P.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 459 (01) : L119 - L123
  • [36] Mass segregation of embedded clusters in the Milky Way
    Xin-Yue Er
    Zhi-Bo Jiang
    Yan-Ning Fu
    [J]. Research in Astronomy and Astrophysics, 2013, 13 (03) : 277 - 289
  • [37] Mass segregation in young clusters: observational biases
    Joana Ascenso
    João Alves
    Maria Teresa V. T. Lago
    [J]. Astrophysics and Space Science, 2009, 324 : 113 - 119
  • [38] The IMF and mass segregation in young massive clusters
    Grebel, EK
    Gallagher, JS
    [J]. FORMATION AND EVOLUTION OF MASSIVE YOUNG STAR CLUSTERS, 2004, 322 : 101 - 109
  • [39] ONE MODEL OF GLOBULAR STELLAR CLUSTERS WITH CONTINUOUSLY MASS DISTRIBUTED STELLAR COMPOSITION
    BAGIN, VM
    [J]. ASTRONOMICHESKII ZHURNAL, 1973, 50 (03): : 653 - 657
  • [40] Radial variation in the stellar mass functions of star clusters
    Webb, Jeremy J.
    Vesperini, Enrico
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 463 (03) : 2383 - 2393