Rapid mass segregation in small stellar clusters

被引:0
|
作者
Mario Spera
Roberto Capuzzo-Dolcetta
机构
[1] Universitá degli Studi di Milano Bicocca,Department of Physics
[2] Universität Innsbruck,Institut für Astro
[3] Sapienza, und Teilchenphysik
[4] Universitá di Roma,Department of Physics
来源
关键词
Methods: numerical; Galaxies: star clusters: general; Galaxies: kinematics and dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we focus our attention on small-to-intermediate N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document}-body systems that are, initially, distributed uniformly in space and dynamically ‘cool’ (virial ratios Q=2T/|Ω|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q=2T/|\varOmega|$\end{document} below ∼0.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sim0.3$\end{document}). In this work, we study the mass segregation that emerges after the initial violent dynamical evolution. At this scope, we ran a set of high precision N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document}-body simulations of isolated clusters by means of HiGPUs, our direct summation N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document}-body code. After the collapse, the system shows a clear mass segregation. This (quick) mass segregation occurs in two phases: the first shows up in clumps originated by sub-fragmentation before the deep overall collapse; this segregation is partly erased during the deep collapse to re-emerge, abruptly, during the second phase, that follows the first bounce of the system. In this second stage, the proper clock to measure the rate of segregation is the dynamical time after virialization, which (for cold and cool systems) may be significantly different from the crossing time evaluated from initial conditions. This result is obtained for isolated clusters composed of stars of two different masses (in the ratio mh/ml=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m_{h}/m_{l}=2$\end{document}), at varying their number ratio, and is confirmed also in presence of a massive central object (simulating a black hole of stellar size). Actually, in stellar systems starting their dynamical evolution from cool conditions, the fast mass segregation adds to the following, slow, secular segregation which is collisionally induced. The violent mass segregation is an effect persistent over the whole range of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document} (128≤N≤1,024\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$128 \leq N \leq1\mbox{,}024$\end{document}) investigated, and is an interesting feature on the astronomical-observational side, too. The semi-steady state reached after virialization corresponds to a mass segregated distribution function rather than that of equipartition of kinetic energy per unit mass as it should result from violent relaxation.
引用
收藏
相关论文
共 50 条
  • [21] The stellar mass-function of globular clusters
    Baumgardt, H
    [J]. NEW HORIZONS IN GLOBULAR CLUSTER ASTRONOMY, 2003, 296 : 197 - 198
  • [22] The unusual stellar mass function of starburst clusters
    Dib, Sami
    [J]. JOURNAL OF THE KOREAN ASTRONOMICAL SOCIETY, 2007, 40 (04) : 157 - 160
  • [23] MODEL OF STELLAR CLUSTERS WITH SPHERICAL SYMMETRY AND STELLAR COMPOSITION HOMOGENEOUS IN MASS
    BAGIN, VM
    [J]. ASTRONOMICHESKII ZHURNAL, 1979, 56 (04): : 739 - 749
  • [24] The evolution of the stellar mass function in star clusters
    Kruijssen, J. M. D.
    [J]. ASTRONOMY & ASTROPHYSICS, 2009, 507 (03) : 1409 - 1423
  • [25] Accretion in stellar clusters and the initial mass function
    Bonnell, IA
    Clarke, CJ
    Bate, MR
    Pringle, JE
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2001, 324 (03) : 573 - 579
  • [26] No evidence of mass segregation in massive young clusters
    Ascenso, J.
    Alves, J.
    Lago, M. T. V. T.
    [J]. ASTRONOMY & ASTROPHYSICS, 2009, 495 (01) : 147 - 155
  • [27] Indication of Mass Segregation in LMC Star Clusters
    Nikolov, Grigor B.
    Kontizas, Mary
    Dapergolas, Anastasos
    Belcheva, Maya K.
    Golev, Valeri
    Bellas-Velidis, Ioannis
    [J]. STAR CLUSTERS IN THE ERA OF LARGE SURVEYS: PROCEEDINGS OF SYMPOSIUM 5 OF JENAM 2010, 2012, : 227 - +
  • [28] Anisotropic Mass Segregation in Rotating Globular Clusters
    Szolgyen, Akos
    Meiron, Yohai
    Kocsis, Bence
    [J]. ASTROPHYSICAL JOURNAL, 2019, 887 (02):
  • [29] Evidence for primordial mass segregation in globular clusters
    Baumgardt, Holger
    De Marchi, Guido
    Kroupa, Pavel
    [J]. ASTROPHYSICAL JOURNAL, 2008, 685 (01): : 247 - 253
  • [30] Mass segregation in young clusters: observational biases
    Ascenso, Joana
    Alves, Joao
    Lago, Maria Teresa V. T.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2009, 324 (2-4) : 113 - 119