Bootstrap in semi-functional partial linear regression under dependence

被引:0
|
作者
Germán Aneiros
Paula Raña
Philippe Vieu
Juan Vilar
机构
[1] Universidade da Coruña,Departamento de Matemáticas
[2] Université Paul Sabatier,Institut de Mathématiques
来源
TEST | 2018年 / 27卷
关键词
Bootstrap; Dependent data; Functional data; Semi-parametric regression; 62G08; 62G09; 62G20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the semi-functional partial linear regression model Y=XTβ+m(χ)+ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y={{\varvec{X}}}^\mathrm{T}{\varvec{\beta }}+m({\varvec{\chi }})+\varepsilon $$\end{document} under α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-mixing conditions. β∈Rp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\beta }} \in \mathbb {R}^{p}$$\end{document} and m(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m(\cdot )$$\end{document} denote an unknown vector and an unknown smooth real-valued operator, respectively. The covariates X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\varvec{X}}}$$\end{document} and χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\chi }}$$\end{document} are valued in Rp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{p}$$\end{document} and some infinite-dimensional space, respectively, and the random error ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} verifies E(ε|X,χ)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {E}(\varepsilon |{{\varvec{X}}},{\varvec{\chi }})=0$$\end{document}. Naïve and wild bootstrap procedures are proposed to approximate the distribution of kernel-based estimators of β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\beta }}$$\end{document} and m(χ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m(\chi )$$\end{document}, and their asymptotic validities are obtained. A simulation study shows the behavior (on finite sample sizes) of the proposed bootstrap methodology when applied to construct confidence intervals, while an application to real data concerning electricity market illustrates its usefulness in practice.
引用
收藏
页码:659 / 679
页数:20
相关论文
共 50 条
  • [1] Bootstrap in semi-functional partial linear regression under dependence
    Aneiros, German
    Rana, Paula
    Vieu, Philippe
    Vilar, Juan
    [J]. TEST, 2018, 27 (03) : 659 - 679
  • [2] Semi-functional partial linear regression
    Aneiros-Perez, German
    Vieu, Philippe
    [J]. STATISTICS & PROBABILITY LETTERS, 2006, 76 (11) : 1102 - 1110
  • [3] Semi-functional partial linear quantile regression
    Ding, Hui
    Lu, Zhiping
    Zhang, Jian
    Zhang, Riquan
    [J]. STATISTICS & PROBABILITY LETTERS, 2018, 142 : 92 - 101
  • [4] Tests for the linear hypothesis in semi-functional partial linear regression models
    Zhu, Shuzhi
    Zhao, Peixin
    [J]. METRIKA, 2019, 82 (02) : 125 - 148
  • [5] Confidence and prediction intervals in semi-functional partial linear regression
    Rana, Paula
    Aneiros, German
    Vieu, Philippe
    Vilar, Juan
    [J]. FUNCTIONAL STATISTICS AND RELATED FIELDS, 2017, : 217 - 224
  • [6] Robust estimators in semi-functional partial linear regression models
    Boente, Graciela
    Vahnovan, Alejandra
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 154 : 59 - 84
  • [7] Tests for the linear hypothesis in semi-functional partial linear regression models
    Shuzhi Zhu
    Peixin Zhao
    [J]. Metrika, 2019, 82 : 125 - 148
  • [8] Asymptotic results of semi-functional partial linear regression estimate under functional spatial dependency
    Benallou, M.
    Attouch, M. K.
    Benchikh, T.
    Fetitah, O.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (20) : 7172 - 7192
  • [9] Estimation for semi-functional linear regression
    Tang Qingguo
    [J]. STATISTICS, 2015, 49 (06) : 1262 - 1278
  • [10] Local linear-kNN smoothing for semi-functional partial linear regression
    Houda, Kedir Nassima
    Tawfik, Benchikh
    Amina, Naceri
    Omar, Fetitah
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 53 (02): : 537 - 555