Confidence and prediction intervals in semi-functional partial linear regression

被引:0
|
作者
Rana, Paula [1 ]
Aneiros, German [1 ]
Vieu, Philippe [2 ]
Vilar, Juan [1 ]
机构
[1] Univ A Coruna, Dept Matemat, La Coruna, Spain
[2] Univ Paul Sabatier, Inst Math, Toulouse, France
关键词
BOOTSTRAP;
D O I
10.1007/978-3-319-55846-2_29
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Semi-functional partial linear regression model allows to deal with a non-parametric and a linear component within the functional regression. Naive and wild bootstrap procedures are proposed to approximate the distribution of the estimators for each component in the model, and their asymptotic validities are obtained in the context of dependence data, under a-mixing conditions. Based on that bootstrap procedures, confidence intervals can be obtained for each component in the model, which can be also extended to deal with prediction intervals and prediction densities.
引用
收藏
页码:217 / 224
页数:8
相关论文
共 50 条
  • [1] Semi-functional partial linear regression
    Aneiros-Perez, German
    Vieu, Philippe
    [J]. STATISTICS & PROBABILITY LETTERS, 2006, 76 (11) : 1102 - 1110
  • [2] Semi-functional partial linear quantile regression
    Ding, Hui
    Lu, Zhiping
    Zhang, Jian
    Zhang, Riquan
    [J]. STATISTICS & PROBABILITY LETTERS, 2018, 142 : 92 - 101
  • [3] Bootstrap in semi-functional partial linear regression under dependence
    Aneiros, German
    Rana, Paula
    Vieu, Philippe
    Vilar, Juan
    [J]. TEST, 2018, 27 (03) : 659 - 679
  • [4] Tests for the linear hypothesis in semi-functional partial linear regression models
    Zhu, Shuzhi
    Zhao, Peixin
    [J]. METRIKA, 2019, 82 (02) : 125 - 148
  • [5] Bootstrap in semi-functional partial linear regression under dependence
    Germán Aneiros
    Paula Raña
    Philippe Vieu
    Juan Vilar
    [J]. TEST, 2018, 27 : 659 - 679
  • [6] Robust estimators in semi-functional partial linear regression models
    Boente, Graciela
    Vahnovan, Alejandra
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 154 : 59 - 84
  • [7] Tests for the linear hypothesis in semi-functional partial linear regression models
    Shuzhi Zhu
    Peixin Zhao
    [J]. Metrika, 2019, 82 : 125 - 148
  • [8] Estimation for semi-functional linear regression
    Tang Qingguo
    [J]. STATISTICS, 2015, 49 (06) : 1262 - 1278
  • [9] Local linear-kNN smoothing for semi-functional partial linear regression
    Houda, Kedir Nassima
    Tawfik, Benchikh
    Amina, Naceri
    Omar, Fetitah
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 53 (02): : 537 - 555
  • [10] Optimal prediction for kernel-based semi-functional linear regression
    Guo, Keli
    Fan, Jun
    Zhu, Lixing
    [J]. ANALYSIS AND APPLICATIONS, 2024, 22 (03) : 467 - 505