Semi-functional partial linear regression

被引:158
|
作者
Aneiros-Perez, German
Vieu, Philippe
机构
[1] Univ A Coruna, Dept Matemat, Fac Informat, Coruna 15071 A, Spain
[2] Univ Toulouse 3, F-31062 Toulouse, France
关键词
functional variable; partial linear regression; asymptotic normality;
D O I
10.1016/j.spl.2005.12.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This note deals with the problem of predicting some real-valued response variable in the situation where some among the explanatory variables are functional. More precisely, a new model is introduced in order to capture both the advantages of a semi-linear modelling and those of the recent advances on nonparametric statistics for functional data. The aim of this note is to provide the first advances in this direction. After having constructed precisely the so-called semi-functional partially linear model, the estimates are presented and some asymptotic results (with rates of convergence) are given. Lastly, a real data example illustrates the usefulness of the model. (C) 2005 Published by Elsevier B.V.
引用
收藏
页码:1102 / 1110
页数:9
相关论文
共 50 条
  • [1] Semi-functional partial linear quantile regression
    Ding, Hui
    Lu, Zhiping
    Zhang, Jian
    Zhang, Riquan
    [J]. STATISTICS & PROBABILITY LETTERS, 2018, 142 : 92 - 101
  • [2] Bootstrap in semi-functional partial linear regression under dependence
    Aneiros, German
    Rana, Paula
    Vieu, Philippe
    Vilar, Juan
    [J]. TEST, 2018, 27 (03) : 659 - 679
  • [3] Tests for the linear hypothesis in semi-functional partial linear regression models
    Zhu, Shuzhi
    Zhao, Peixin
    [J]. METRIKA, 2019, 82 (02) : 125 - 148
  • [4] Confidence and prediction intervals in semi-functional partial linear regression
    Rana, Paula
    Aneiros, German
    Vieu, Philippe
    Vilar, Juan
    [J]. FUNCTIONAL STATISTICS AND RELATED FIELDS, 2017, : 217 - 224
  • [5] Robust estimators in semi-functional partial linear regression models
    Boente, Graciela
    Vahnovan, Alejandra
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 154 : 59 - 84
  • [6] Bootstrap in semi-functional partial linear regression under dependence
    Germán Aneiros
    Paula Raña
    Philippe Vieu
    Juan Vilar
    [J]. TEST, 2018, 27 : 659 - 679
  • [7] Tests for the linear hypothesis in semi-functional partial linear regression models
    Shuzhi Zhu
    Peixin Zhao
    [J]. Metrika, 2019, 82 : 125 - 148
  • [8] Estimation for semi-functional linear regression
    Tang Qingguo
    [J]. STATISTICS, 2015, 49 (06) : 1262 - 1278
  • [9] Local linear-kNN smoothing for semi-functional partial linear regression
    Houda, Kedir Nassima
    Tawfik, Benchikh
    Amina, Naceri
    Omar, Fetitah
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 53 (02): : 537 - 555
  • [10] Semi-Functional Partial Linear Quantile Regression Model with Randomly Censored Responses
    Ling, Nengxiang
    Yang, Jintao
    Yu, Tonghui
    Ding, Hui
    Jia, Zhaoli
    [J]. COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2024,