Instantons on hyperkähler manifolds

被引:0
|
作者
Chandrashekar Devchand
Massimiliano Pontecorvo
Andrea Spiro
机构
[1] Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Dipartimento di Matematica e Fisica
[2] Università Roma Tre,Scuola di Scienze e Tecnologie
[3] Università di Camerino,undefined
关键词
Yang–Mills theory; Instantons; Hyperkähler geometry; Harmonic space; 70S15; 14D21; 53C28; 53C26; 32L05; 58D27;
D O I
暂无
中图分类号
学科分类号
摘要
An instanton (E, D) on a (pseudo-)hyperkähler manifold M is a vector bundle E associated with a principal G-bundle with a connection D whose curvature is pointwise invariant under the quaternionic structures of TxM,x∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_x M,~x\in M$$\end{document}, and thus satisfies the Yang–Mills equations. Revisiting a construction of solutions, we prove a local bijection between gauge equivalence classes of instantons on M and equivalence classes of certain holomorphic functions taking values in the Lie algebra of GC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G^{\mathbb {C}}$$\end{document} defined on an appropriate SL2(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {SL}_2({\mathbb {C}})$$\end{document}-bundle over M. Our reformulation affords a streamlined proof of Uhlenbeck’s compactness theorem for instantons on (pseudo-)hyperkähler manifolds.
引用
收藏
页码:533 / 561
页数:28
相关论文
共 50 条
  • [1] Instantons, Monopoles and Toric HyperKähler Manifolds
    Thomas C. Kraan
    Communications in Mathematical Physics, 2000, 212 : 503 - 533
  • [2] Hyperkähler cones and instantons on quaternionic Kähler manifolds
    Chandrashekar Devchand
    Massimiliano Pontecorvo
    Andrea Spiro
    Annals of Global Analysis and Geometry, 2020, 58 : 291 - 323
  • [3] Parabolic automorphisms of hyperkähler manifolds
    Amerik, Ekaterina
    Verbitsky, Misha
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 179 : 232 - 252
  • [4] Compact hyperkähler manifolds: basic results
    Daniel Huybrechts
    Inventiones mathematicae, 2003, 152 : 209 - 212
  • [5] Compact hyperkähler manifolds: basic results
    Daniel Huybrechts
    Inventiones mathematicae, 1999, 135 : 63 - 113
  • [6] Deformations of trianalytic subvarieties of hyperkähler manifolds
    Verbitsky M.
    Selecta Mathematica, 1998, 4 (3) : 447 - 490
  • [7] Properties of Hyperkähler Manifolds and Their Twistor Spaces
    Ulf Lindström
    Martin Roček
    Communications in Mathematical Physics, 2010, 293 : 257 - 278
  • [8] Contraction centers in families of hyperkähler manifolds
    Ekaterina Amerik
    Misha Verbitsky
    Selecta Mathematica, 2021, 27
  • [9] Superconformal Symmetry and HyperKähler Manifolds with Torsion
    Yat Sun Poon
    Andrew Swann
    Communications in Mathematical Physics, 2003, 241 : 177 - 189
  • [10] Detecting Quaternionic Maps Between Hyperkähler Manifolds
    Chen J.
    Li J.
    Communications in Mathematics and Statistics, 2013, 1 (3) : 305 - 314