Instantons on hyperkähler manifolds

被引:0
|
作者
Chandrashekar Devchand
Massimiliano Pontecorvo
Andrea Spiro
机构
[1] Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Dipartimento di Matematica e Fisica
[2] Università Roma Tre,Scuola di Scienze e Tecnologie
[3] Università di Camerino,undefined
关键词
Yang–Mills theory; Instantons; Hyperkähler geometry; Harmonic space; 70S15; 14D21; 53C28; 53C26; 32L05; 58D27;
D O I
暂无
中图分类号
学科分类号
摘要
An instanton (E, D) on a (pseudo-)hyperkähler manifold M is a vector bundle E associated with a principal G-bundle with a connection D whose curvature is pointwise invariant under the quaternionic structures of TxM,x∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_x M,~x\in M$$\end{document}, and thus satisfies the Yang–Mills equations. Revisiting a construction of solutions, we prove a local bijection between gauge equivalence classes of instantons on M and equivalence classes of certain holomorphic functions taking values in the Lie algebra of GC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G^{\mathbb {C}}$$\end{document} defined on an appropriate SL2(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {SL}_2({\mathbb {C}})$$\end{document}-bundle over M. Our reformulation affords a streamlined proof of Uhlenbeck’s compactness theorem for instantons on (pseudo-)hyperkähler manifolds.
引用
收藏
页码:533 / 561
页数:28
相关论文
共 50 条
  • [31] Examples of Non-Rigid, Modular Vector Bundles on Hyperkähler Manifolds
    Fatighenti, Enrico
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (10) : 8782 - 8793
  • [32] The semi-chiral quotient, hyperkähler manifolds and T-duality
    P. Marcos Crichigno
    Journal of High Energy Physics, 2012
  • [33] The Kähler cone of a compact hyperkähler manifold
    Daniel Huybrechts
    Mathematische Annalen, 2003, 326 : 499 - 513
  • [34] On the cohomology of hyperkähler quotients
    Lisa Jeffrey
    Young-Hoon Kiem
    Frances Kirwan
    Transformation Groups, 2009, 14 : 801 - 823
  • [35] Calibrated geometry in hyperkähler cones, 3-Sasakian manifolds, and twistor spaces
    Aslan, Benjamin
    Karigiannis, Spiro
    Madnick, Jesse
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024,
  • [36] Cubic threefolds and hyperkähler manifolds uniformized by the 10-dimensional complex ball
    Samuel Boissière
    Chiara Camere
    Alessandra Sarti
    Mathematische Annalen, 2019, 373 : 1429 - 1455
  • [37] Fully Non-linear Elliptic Equations on Compact Manifolds with a Flat Hyperkähler Metric
    Giovanni Gentili
    Jiaogen Zhang
    The Journal of Geometric Analysis, 2022, 32
  • [38] Special Joyce structures and hyperkähler metricsSpecial Joyce structures and hyperkähler metricsI. Tulli
    Iván Tulli
    Letters in Mathematical Physics, 114 (6)
  • [39] Linear Perturbations of Hyperkähler Metrics
    Sergei Alexandrov
    Boris Pioline
    Frank Saueressig
    Stefan Vandoren
    Letters in Mathematical Physics, 2009, 87 : 225 - 265
  • [40] Contact Spheres and Hyperkähler Geometry
    Hansjörg Geiges
    Jesús Gonzalo Pérez
    Communications in Mathematical Physics, 2009, 287 : 719 - 748