Properties of Hyperkähler Manifolds and Their Twistor Spaces

被引:0
|
作者
Ulf Lindström
Martin Roček
机构
[1] Uppsala University,Department of Physics and Astronomy
[2] SUNY,C.N. Yang Institute for Theoretical Physics
来源
关键词
Manifold; Sigma Model; Twistor Space; North Pole; Killing Spinor;
D O I
暂无
中图分类号
学科分类号
摘要
We describe the relation between supersymmetric σ-models on hyperkähler manifolds, projective superspace, and twistor space. We review the essential aspects and present a coherent picture with a number of new results.
引用
收藏
页码:257 / 278
页数:21
相关论文
共 50 条
  • [1] Unobstructedness of hyperkähler twistor spaces
    Ana-Maria Brecan
    Tim Kirschner
    Martin Schwald
    Mathematische Zeitschrift, 2022, 300 : 2485 - 2517
  • [2] Calibrated geometry in hyperkähler cones, 3-Sasakian manifolds, and twistor spaces
    Aslan, Benjamin
    Karigiannis, Spiro
    Madnick, Jesse
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024,
  • [3] On vector bundles over hyperkähler twistor spaces
    Indranil Biswas
    Artour Tomberg
    Mathematische Zeitschrift, 2022, 300 : 3143 - 3170
  • [4] Instantons on hyperkähler manifolds
    Chandrashekar Devchand
    Massimiliano Pontecorvo
    Andrea Spiro
    Annali di Matematica Pura ed Applicata (1923 -), 2020, 199 : 533 - 561
  • [5] Teichmüller spaces and Torelli theorems for hyperkähler manifolds
    Eduard Looijenga
    Mathematische Zeitschrift, 2021, 298 : 261 - 279
  • [6] Parabolic automorphisms of hyperkähler manifolds
    Amerik, Ekaterina
    Verbitsky, Misha
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 179 : 232 - 252
  • [7] Instantons, Monopoles and Toric HyperKähler Manifolds
    Thomas C. Kraan
    Communications in Mathematical Physics, 2000, 212 : 503 - 533
  • [8] Hyperkähler cones and instantons on quaternionic Kähler manifolds
    Chandrashekar Devchand
    Massimiliano Pontecorvo
    Andrea Spiro
    Annals of Global Analysis and Geometry, 2020, 58 : 291 - 323
  • [9] Twistor Geometry for Hyperkähler Metrics on Complex Adjoint Orbits
    Sérgio d'Amorim Santa-Cruz
    Annals of Global Analysis and Geometry, 1997, 15 (4) : 361 - 377
  • [10] Compact hyperkähler manifolds: basic results
    Daniel Huybrechts
    Inventiones mathematicae, 2003, 152 : 209 - 212