The equivalence on classical metrics

被引:0
|
作者
Wei-ping Yin
An Wang
机构
[1] Capital Normal University,School of Mathematical Sciences
来源
关键词
Bergman metric; Einstein-Kähler metric; Cartan-Hartogs domain; equivalence on classical metrics; 32H15; 32F15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the complete invariant metrics on Cartan-Hartogs domains which are the special types of Hua domains. Firstly, we introduce a class of new complete invariant metrics on these domains, and prove that these metrics are equivalent to the Bergman metric. Secondly, the Ricci curvatures under these new metrics are bounded from above and below by the negative constants. Thirdly, we estimate the holomorphic sectional curvatures of the new metrics, and prove that the holomorphic sectional curvatures are bounded from above and below by the negative constants. Finally, by using these new metrics and Yau’s Schwarz lemma we prove that the new metrics are equivalent to the Einstein-Kähler metric. That means that the Yau’s conjecture is true on Cartan-Hartogs domains.
引用
收藏
页码:183 / 200
页数:17
相关论文
共 50 条
  • [1] The equivalence on classical metrics
    Wei-ping Yin & An WANG School of Mathematical Sciences
    [J]. Science China Mathematics, 2007, (02) : 183 - 200
  • [2] The equivalence on classical metrics
    Yin, Wei-ping
    Wang, An
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (02): : 183 - 200
  • [3] ON EQUIVALENCE OF 2 METRICS IN CLASSICAL THERMODYNAMICS
    MRUGALA, R
    [J]. PHYSICA A, 1984, 125 (2-3): : 631 - 639
  • [4] Metrics and Equivalence in Conservation Banking
    Grimm, Marie
    [J]. LAND, 2021, 10 (06)
  • [5] Optical metrics and projective equivalence
    Casey, Stephen
    Dunajski, Maciej
    Gibbons, Gary
    Warnick, Claude
    [J]. PHYSICAL REVIEW D, 2011, 83 (08):
  • [6] The principle of equivalence and cosmological metrics
    Hall, G. S.
    Lonie, D. P.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (02)
  • [7] Equivalence of quantum metrics with a common domain
    Latremoliere, Frederic
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 443 (02) : 1179 - 1195
  • [8] Topological equivalence of metrics in Teichmuller space
    Liu, Lixin
    Sun, Zongliang
    Wei, Hanbai
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2008, 33 (01) : 159 - 170
  • [9] Geodesic equivalence of metrics on surfaces and integrability
    Matveev, VS
    Topalov, PJ
    [J]. DOKLADY AKADEMII NAUK, 1999, 367 (06) : 736 - 738
  • [10] On the equivalence of optimization metrics in Stokes polarimetry
    Foreman, Matthew R.
    Goudail, Francois
    [J]. OPTICAL ENGINEERING, 2019, 58 (08)