The equivalence on classical metrics

被引:0
|
作者
Wei-ping Yin
An Wang
机构
[1] Capital Normal University,School of Mathematical Sciences
来源
关键词
Bergman metric; Einstein-Kähler metric; Cartan-Hartogs domain; equivalence on classical metrics; 32H15; 32F15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the complete invariant metrics on Cartan-Hartogs domains which are the special types of Hua domains. Firstly, we introduce a class of new complete invariant metrics on these domains, and prove that these metrics are equivalent to the Bergman metric. Secondly, the Ricci curvatures under these new metrics are bounded from above and below by the negative constants. Thirdly, we estimate the holomorphic sectional curvatures of the new metrics, and prove that the holomorphic sectional curvatures are bounded from above and below by the negative constants. Finally, by using these new metrics and Yau’s Schwarz lemma we prove that the new metrics are equivalent to the Einstein-Kähler metric. That means that the Yau’s conjecture is true on Cartan-Hartogs domains.
引用
收藏
页码:183 / 200
页数:17
相关论文
共 50 条
  • [41] THE EQUIVALENCE OF ENSEMBLES FOR CLASSICAL-SYSTEMS OF PARTICLES
    GEORGII, HO
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1995, 80 (5-6) : 1341 - 1378
  • [42] Usage metrics vs classical metrics: analysis of Russia's research output
    Markusova, Valentina
    Bogorov, Valentin
    Libkind, Alexander
    [J]. SCIENTOMETRICS, 2018, 114 (02) : 593 - 603
  • [43] Usage metrics vs classical metrics: analysis of Russia’s research output
    Valentina Markusova
    Valentin Bogorov
    Alexander Libkind
    [J]. Scientometrics, 2018, 114 : 593 - 603
  • [44] Quantum Mechanical Equivalence of the Metrics of a Centrally Symmetric Gravitational Field
    M. V. Gorbatenko
    V. P. Neznamov
    [J]. Theoretical and Mathematical Physics, 2019, 198 : 425 - 454
  • [45] The equivalence of Fourier-based and Wasserstein metrics on imaging problems
    Auricchio, Gennaro
    Codegoni, Andrea
    Gualandi, Stefano
    Toscani, Giuseppe
    Veneroni, Marco
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2020, 31 (03) : 627 - 649
  • [46] On the Equivalence of Convergence of Fuzzy Number Series with Respect to Different Metrics
    Wang, Hong-Mei
    Fan, Tai-He
    [J]. QUANTITATIVE LOGIC AND SOFT COMPUTING 2016, 2017, 510 : 465 - 475
  • [47] Gromov hyperbolic equivalence of the hyperbolic and quasihyperbolic metrics in Denjoy domains
    Hasto, Peter
    Portilla, Ana
    Rodriguez, Jose M.
    Touris, Eva
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2010, 42 : 282 - 294
  • [48] Geodesic equivalence of metrics as a particular case of integrability of geodesic flows
    V. S. Matveev
    P. J. Topalov
    [J]. Theoretical and Mathematical Physics, 2000, 123 : 651 - 658
  • [49] QUANTUM MECHANICAL EQUIVALENCE OF THE METRICS OF A CENTRALLY SYMMETRIC GRAVITATIONAL FIELD
    Gorbatenko, M. V.
    Neznamov, V. P.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 198 (03) : 425 - 454
  • [50] Geodesic equivalence of metrics as a particular case of integrability of geodesic flows
    Matveev, VS
    Topalov, PJ
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2000, 123 (02) : 651 - 658