Optical metrics and projective equivalence

被引:3
|
作者
Casey, Stephen [1 ]
Dunajski, Maciej [1 ]
Gibbons, Gary [1 ]
Warnick, Claude [1 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
来源
PHYSICAL REVIEW D | 2011年 / 83卷 / 08期
关键词
D O I
10.1103/PhysRevD.83.084047
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Trajectories of light rays in a static spacetime are described by unparametrized geodesics of the Riemannian optical metric associated with the Lorentzian spacetime metric. We investigate the uniqueness of this structure and demonstrate that two different observers, moving relative to one another, who both see the Universe as static may determine the geometry of the light rays differently. More specifically, we classify Lorentzian metrics admitting more than one hyper-surface orthogonal timelike Killing vector and analyze the projective equivalence of the resulting optical metrics. These metrics are shown to be projectively equivalent up to diffeomorphism if the static Killing vectors generate a group SL(2,R), but not projectively equivalent in general. We also consider the cosmological C metrics in Einstein-Maxwell theory and demonstrate that optical metrics corresponding to different values of the cosmological constant are projectively equivalent.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] ON PROJECTIVE EQUIVALENCE AND POINTWISE PROJECTIVE RELATION OF RANDERS METRICS
    Matveev, Vladimir S.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (09)
  • [2] On projective and affine equivalence of sub-Riemannian metrics
    Jean, Frederic
    Maslovskaya, Sofya
    Zelenko, Igor
    [J]. GEOMETRIAE DEDICATA, 2019, 203 (01) : 279 - 319
  • [3] On projective and affine equivalence of sub-Riemannian metrics
    Frédéric Jean
    Sofya Maslovskaya
    Igor Zelenko
    [J]. Geometriae Dedicata, 2019, 203 : 279 - 319
  • [4] PROJECTIVE EQUIVALENCE AND CONFORMAL EQUIVALENCE
    GASQUI, J
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1979, 12 (01): : 101 - 134
  • [5] On the projective Randers metrics
    Rafie-Rad, Mehdi
    Rezaei, Bahman
    [J]. COMPTES RENDUS MATHEMATIQUE, 2012, 350 (5-6) : 281 - 283
  • [6] The equivalence on classical metrics
    Wei-ping Yin
    An Wang
    [J]. Science in China Series A: Mathematics, 2007, 50 : 183 - 200
  • [7] The equivalence on classical metrics
    Wei-ping Yin & An WANG School of Mathematical Sciences
    [J]. Science China Mathematics, 2007, (02) : 183 - 200
  • [8] The equivalence on classical metrics
    Yin, Wei-ping
    Wang, An
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (02): : 183 - 200
  • [9] Projective equivalence for the roots of unity
    Fu, Hang
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 56 (03) : 823 - 871
  • [10] PROJECTIVE EQUIVALENCE OF MATROIDS WITH COEFFICIENTS
    WENZEL, W
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1991, 57 (01) : 15 - 45