ON PROJECTIVE EQUIVALENCE AND POINTWISE PROJECTIVE RELATION OF RANDERS METRICS

被引:10
|
作者
Matveev, Vladimir S. [1 ]
机构
[1] Univ Jena, Inst Math, D-07737 Jena, Germany
关键词
Finsler metrics; Randers metrics; projective equivalence; pointwise projective relation; projective transformations; LICHNEROWICZ-OBATA CONJECTURE;
D O I
10.1142/S0129167X12500930
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that projective equivalence of two Randers Finsler metrics F = root g(xi, xi) + omega(xi) and (F) over bar = root(g) over bar(xi, xi) + (omega) over bar(xi) such that at least one of the one-forms omega and (omega) over bar is not closed implies that for a certain constant C > 0 we have g = C-2 . (g) over bar and the form omega-C . (omega) over bar is closed. As an application we prove the natural generalization of the projective Lichnerowicz-Obata conjecture for Randers metrics.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] On the projective Randers metrics
    Rafie-Rad, Mehdi
    Rezaei, Bahman
    [J]. COMPTES RENDUS MATHEMATIQUE, 2012, 350 (5-6) : 281 - 283
  • [2] Projective equivalence between an (α, β)-metric and a Randers metric
    Yu, Yaoyong
    You, Ying
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (01): : 155 - 162
  • [3] Optical metrics and projective equivalence
    Casey, Stephen
    Dunajski, Maciej
    Gibbons, Gary
    Warnick, Claude
    [J]. PHYSICAL REVIEW D, 2011, 83 (08):
  • [4] On the Projective Algebra of Randers Metrics of Constant Flag Curvature
    Rafie-Rad, Mehdi
    Rezaei, Bahman
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
  • [5] SPECIAL PROJECTIVE ALGEBRA OF RANDERS METRICS OF CONSTANT S-CURVATURE
    Rafie-Rad, M.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (04)
  • [6] On projective and affine equivalence of sub-Riemannian metrics
    Jean, Frederic
    Maslovskaya, Sofya
    Zelenko, Igor
    [J]. GEOMETRIAE DEDICATA, 2019, 203 (01) : 279 - 319
  • [7] On projective and affine equivalence of sub-Riemannian metrics
    Frédéric Jean
    Sofya Maslovskaya
    Igor Zelenko
    [J]. Geometriae Dedicata, 2019, 203 : 279 - 319
  • [8] Some new characterizations of projective Randers metrics with constant S-curvature
    Rafie-Rad, M.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (02) : 272 - 278
  • [9] PROJECTIVE EQUIVALENCE AND CONFORMAL EQUIVALENCE
    GASQUI, J
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1979, 12 (01): : 101 - 134
  • [10] Projective change between arbitrary (α, β)-metric and Randers metric
    Zheng, Daxiao
    He, Qun
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 83 (1-2): : 179 - 196