In this paper, we prove that the concavity of Rényi entropy power of positive solutions to the parabolic p-Laplace equations on compact Riemannian manifold with nonnegative Ricci curvature. As applications, we derive the improved Lp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^p$$\end{document}-Gagliardo-Nirenberg inequalities.
机构:
Univ Cattolica Sacro Cuore, Dipartimento Matemat & Fis, Via Garzetta 48, I-25133 Brescia, ItalyUniv Cattolica Sacro Cuore, Dipartimento Matemat & Fis, Via Garzetta 48, I-25133 Brescia, Italy
Borrelli, William
Mosconi, Sunra
论文数: 0引用数: 0
h-index: 0
机构:
Univ Catania, Dept Math & Comp Sci, Viale A Doria 6, I-95125 Catania, ItalyUniv Cattolica Sacro Cuore, Dipartimento Matemat & Fis, Via Garzetta 48, I-25133 Brescia, Italy
Mosconi, Sunra
Squassina, Marco
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cattolica Sacro Cuore, Dipartimento Matemat & Fis, Via Garzetta 48, I-25133 Brescia, ItalyUniv Cattolica Sacro Cuore, Dipartimento Matemat & Fis, Via Garzetta 48, I-25133 Brescia, Italy
机构:
Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, 4, Miusskaya sq., MoscowKeldysh Institute of Applied Mathematics of the Russian Academy of Sciences, 4, Miusskaya sq., Moscow
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Jia, Huilian
Wang, Lihe
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
Univ Iowa, Dept Math, Iowa City, IA 52242 USAXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China