The concavity of Rényi entropy power for the parabolic p-Laplace equations and applications

被引:0
|
作者
Yu-Zhao Wang
Yan-Mei Wang
机构
[1] Shanxi University,School of Mathematical Sciences
来源
manuscripta mathematica | 2019年 / 160卷
关键词
Primary 58J35; 35K92; Secondary 35B40; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove that the concavity of Rényi entropy power of positive solutions to the parabolic p-Laplace equations on compact Riemannian manifold with nonnegative Ricci curvature. As applications, we derive the improved Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-Gagliardo-Nirenberg inequalities.
引用
收藏
页码:509 / 522
页数:13
相关论文
共 50 条