SOLUTIONS TO A CLASS OF PARABOLIC INHOMOGENEOUS NORMALIZED p-LAPLACE EQUATIONS

被引:0
|
作者
Liu, Fang [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Sci, Dept Appl Math, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Parabolic normalized p-Laplace equation; viscosity solution; asymptotic mean value property; comparison principle; uniqueness theorem; infinity Laplacian; TUG-OF-WAR; MEAN-VALUE CHARACTERIZATION; VISCOSITY SOLUTIONS; INFINITY;
D O I
10.1016/S0252-9602(15)60016-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we prove that viscosity solutions of the parabolic inhomogeneous equations n + p/p u(t) - Delta(N)(p) u = f(x, t) can be characterized using asymptotic mean value properties for all p >= 1, including p = 1 and p = infinity. We also obtain a comparison principle for the non-negative or non-positive inhomogeneous term f for the corresponding initial-boundary value problem and this in turn implies the uniqueness of solutions to such a problem.
引用
收藏
页码:477 / 494
页数:18
相关论文
共 50 条