Harmonicity of Slant Conformal Riemannian Maps

被引:0
|
作者
R. Kaushal
R. Kumar
R. Rani
机构
[1] Punjabi University,
[2] University College,undefined
来源
Mathematical Notes | 2023年 / 113卷
关键词
conformal Riemannian maps; slant conformal Riemannian maps; horizontally homothetic Riemannian maps; Kaehler manifolds; harmonic maps;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:243 / 254
页数:11
相关论文
共 50 条
  • [11] SLANT RIEMANNIAN MAPS TO KAHLER MANIFOLDS
    Sahin, Bayram
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (02)
  • [12] Hemi-slant Riemannian Maps
    Sahin, Bayram
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (01)
  • [13] On Quasi-Hemi-Slant Riemannian Maps
    Prasad, Rajendra
    Kumar, Sushil
    Kumar, Sumeet
    Turgut Vanli, Aysel
    [J]. GAZI UNIVERSITY JOURNAL OF SCIENCE, 2021, 34 (02): : 477 - 491
  • [14] Clairaut slant Riemannian maps to Kahler manifolds
    Yadav, Jyoti
    Shanker, Gauree
    Polat, Murat
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20
  • [15] On slant Riemannian submersions from conformal Sasakian manifolds
    Lone, Mehraj Ahmad
    Wani, Towseef Ali
    [J]. QUAESTIONES MATHEMATICAE, 2024, 47 (04) : 905 - 919
  • [16] GEOMETRY OF CLAIRAUT CONFORMAL RIEMANNIAN MAPS
    Meena, Kiran
    Shah, Hemangi madhusudan
    Sahin, Bayram
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024,
  • [17] On h-Quasi-Hemi-Slant Riemannian Maps
    Bilal, Mohd
    Kumar, Sushil
    Prasad, Rajendra
    Haseeb, Abdul
    Kumar, Sumeet
    [J]. AXIOMS, 2022, 11 (11)
  • [18] Slant Riemannian Maps from an Almost Contact Manifold
    Prasad, Rajendra
    Pandey, Shashikant
    [J]. FILOMAT, 2017, 31 (13) : 3999 - 4007
  • [19] V-Quasi-Bi-Slant Riemannian Maps
    Kumar, Sushil
    Bilal, Mohd
    Prasad, Rajendra
    Haseeb, Abdul
    Chen, Zhizhi
    [J]. SYMMETRY-BASEL, 2022, 14 (07):
  • [20] INVESTIGATION OF QUASI BI-SLANT RIEMANNIAN MAPS
    Kumar, Sushil
    Kumar, Sumeet
    Pandey, Shashikant
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2023, 38 (01): : 59 - 75