INVESTIGATION OF QUASI BI-SLANT RIEMANNIAN MAPS

被引:0
|
作者
Kumar, Sushil [1 ]
Kumar, Sumeet [2 ]
Pandey, Shashikant [3 ,4 ]
机构
[1] Shri Jai Narain Post Grad Coll, Fac Sci, Dept Math, Lucknow, India
[2] BR Ambedkar Bihar Univ, Dr SKSWomens Coll Motihari, Fac Sci, Dept Math, Muzaffarpur, India
[3] Univ Lucknow, Fac Sci, Dept Math & Astron, Lcknow, Uttar Pradesh, India
[4] Univ Lucknow, Fac Sci, Dept Math & Astron, Lcknow 226007, Uttar Pradesh, India
关键词
Riemannian maps; Quasi bi-slant Riemannian maps; Almost Hermitian manifolds; INVARIANT; MANIFOLDS;
D O I
10.22190/FUMI220714004K
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Riemannian maps are generalization of well-known notions of isometric immersions and Riemannian submersions. In this paper, we define and study a natural generalization of previously defined quasi bi-slant submersions [18] in the case of Riemannian maps. We mainly investigate fundamental results on quasi bi-slant Riemannian maps from almost Hermitian manifolds to Riemannian manifolds: the integrability of distributions, geometry of foliations, the condition for such maps to be totally geodesic, etc. At the end of the article, we give proper non-trivial examples for this notion.
引用
收藏
页码:59 / 75
页数:17
相关论文
共 50 条
  • [1] ON QUASI BI-SLANT RIEMANNIAN MAPS FROM LORENTZIAN PARA SASAKIAN MANIFOLDS
    Prasad, Rajendra
    Kumar, Sushil
    Singh, Punit Kumar
    [J]. JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2024, 30 (02) : 307 - 320
  • [2] On Pointwise Quasi Bi-Slant Submanifolds
    Akyol, Mehmet Akif
    Beyendi, Selahattin
    Fatima, Tanveer
    Ali, Akram
    [J]. FILOMAT, 2022, 36 (19) : 6687 - 6697
  • [3] Conformal quasi-bi-slant Riemannian maps
    Kumar, Sushil
    Kumar, Sumeet
    Kumar, Deepak
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2023, 28 (04): : 335 - 349
  • [4] V-Quasi-Bi-Slant Riemannian Maps
    Kumar, Sushil
    Bilal, Mohd
    Prasad, Rajendra
    Haseeb, Abdul
    Chen, Zhizhi
    [J]. SYMMETRY-BASEL, 2022, 14 (07):
  • [5] On quasi bi-slant submersions from Sasakian manifolds onto Riemannian manifolds
    Rajendra Prasad
    Punit Kumar Singh
    Sushil Kumar
    [J]. Afrika Matematika, 2021, 32 : 403 - 417
  • [6] On quasi bi-slant submersions from Sasakian manifolds onto Riemannian manifolds
    Prasad, Rajendra
    Singh, Punit Kumar
    Kumar, Sushil
    [J]. AFRIKA MATEMATIKA, 2021, 32 (3-4) : 403 - 417
  • [7] On Pointwise Quasi Bi-Slant Submanifolds
    Akyol, Mehmet Akif
    Beyendi, Selahattin
    Fatima, Tanveer
    Ali, Akram
    [J]. FILOMAT, 2022, 36 (18) : 6687 - 6697
  • [8] On Quasi Bi-Slant Submersions from Kenmotsu Manifolds onto any Riemannian Manifolds
    Prasad, R.
    Akyol, M. A.
    Singh, P. K.
    Kumar, S.
    [J]. JOURNAL OF MATHEMATICAL EXTENSION, 2022, 16 (06)
  • [9] Quasi Bi-Slant Submanifolds of Kaehler Manifolds
    Prasad, Rajendra
    Akyol, Mehmet Akif
    Verma, Sandeep Kumar
    Kumar, Sumeet
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2022, 15 (01): : 57 - 68
  • [10] On Conformal Bi-slant Riemannian Submersions from Locally Product Riemannian Manifolds
    Wani, Towseef Ali
    Lone, Mehraj Ahmad
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (06)