Mid infrared polarization engineering via sub-wavelength biaxial hyperbolic van der Waals crystals

被引:0
|
作者
Saurabh Dixit
Nihar Ranjan Sahoo
Abhishek Mall
Anshuman Kumar
机构
[1] IIT Bombay,Laboratory of Optics of Quantum Materials, Department of Physics
[2] Max Planck Institute for the Structure and Dynamics of Matter,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Mid-infrared (IR) spectral region is of immense importance for astronomy, medical diagnosis, security and imaging due to the existence of the vibrational modes of many important molecules in this spectral range. Therefore, there is a particular interest in miniaturization and integration of IR optical components. To this end, 2D van der Waals (vdW) crystals have shown great potential owing to their ease of integration with other optoelectronic platforms and room temperature operation. Recently, 2D vdW crystals of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-MoO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoO}_{3}$$\end{document} and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-V2O5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {V}_2 \hbox {O}_5$$\end{document} have been shown to possess the unique phenomenon of natural in-plane biaxial hyperbolicity in the mid-infrared frequency regime at room temperature. Here, we report a unique application of this in-plane hyperbolicity for designing highly efficient, lithography free and extremely subwavelength mid-IR photonic devices for polarization engineering. In particular, we show the possibility of a significant reduction in the device footprint while maintaining an enormous extinction ratio from α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-MoO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoO}_{3}$$\end{document} and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-V2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {V}_2$$\end{document}O5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {O}_5$$\end{document} based mid-IR polarizers. Furthermore, we investigate the application of sub-wavelength thin films of these vdW crystals towards engineering the polarization state of incident mid-IR light via precise control of polarization rotation, ellipticity and relative phase. We explain our results using natural in-plane hyperbolic anisotropy of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-MoO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoO}_{3}$$\end{document} and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-V2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {V}_2$$\end{document}O5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {O}_5$$\end{document} via both analytical and full-wave electromagnetic simulations. This work provides a lithography free alternative for miniaturized mid-infrared photonic devices using the hyperbolic anisotropy of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-MoO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoO}_{3}$$\end{document} and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-V2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {V}_2$$\end{document}O5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {O}_5$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Carrier Engineering in Polarization-Sensitive Black Phosphorus van der Waals Junctions
    Su, Bao-Wang
    Li, Xiao-Kuan
    Jiang, Xiao-Qiang
    Xin, Wei
    Huang, Kai-Xuan
    Li, De-Kang
    Guo, Hao-Wei
    Liu, Zhi-Bo
    Tian, Jian-Guo
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (41) : 35615 - 35622
  • [42] Enhanced thermoelectric performance of van der Waals Tellurium via vacancy engineering
    Wang, Yuxi
    Liu, Shuai
    Wu, Zhen
    Liu, Guoliang
    Yang, Xin
    Wei, Tianqi
    Wang, Qianjin
    Ye, Yu
    Li, Deyu
    Zhu, Jia
    [J]. MATERIALS TODAY PHYSICS, 2021, 18
  • [43] Engineering void space in organic van der Waals crystals: calixarenes lead the way
    Dalgarno, Scott J.
    Thallapally, Praveen K.
    Barbour, Leonard J.
    Atwood, Jerry L.
    [J]. CHEMICAL SOCIETY REVIEWS, 2007, 36 (02) : 236 - 245
  • [44] Mid-infrared direct injection and sub-wavelength focusing of designer's surface plasmons polaritons
    Bousseksou, A.
    Tetienne, J-P
    Colombelli, R.
    Babuty, A.
    Moldovan-Doyen, I.
    De Wilde, Y.
    Beaudoin, G.
    Sagnes, I.
    [J]. 2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [45] Silicon on sapphire mid-IR wave-front engineering by using sub-wavelength gratings
    Huang, Yuewang
    Zhao, Qiancheng
    Kalyoncu, Salih K.
    Torun, Rasul
    Lu, Yumeng
    Boyraz, Ozdal
    [J]. 2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [46] Light polarization management via reflection from arrays of sub-wavelength metallic twisted bands
    Nawrot, M.
    Haberko, J.
    Zinkiewicz, L.
    Wasylczyk, P.
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2017, 123 (12):
  • [47] Light polarization management via reflection from arrays of sub-wavelength metallic twisted bands
    M. Nawrot
    J. Haberko
    Ł. Zinkiewicz
    P. Wasylczyk
    [J]. Applied Physics B, 2017, 123
  • [48] Polarization-selective dual-band infrared plasmonic absorber based on sub-wavelength gaps
    Yu, Haihong
    Liang, Zhongzhu
    Meng, Dejia
    Tao, Jin
    Liang, Jingqiu
    Su, Xuemei
    Luo, Yi
    Xu, Xingyu
    Zhang, Yuhao
    [J]. OPTICS COMMUNICATIONS, 2019, 446 : 156 - 161
  • [49] Nanoscale Guiding of Infrared Light with Hyperbolic Volume and Surface Polaritons in van der Waals Material Ribbons
    Dolado, Irene
    Alfaro-Mozaz, Francisco Javier
    Li, Peining
    Nikulina, Elizaveta
    Bylinkin, Andrei
    Liu, Song
    Edgar, James H.
    Casanova, Felix
    Hueso, Luis E.
    Alonso-Gonzalez, Pablo
    Velez, Sauel
    Nikitin, Alexey Y.
    Hillenbrand, Rainer
    [J]. ADVANCED MATERIALS, 2020, 32 (09)
  • [50] Exfoliation of 2D van der Waals crystals in ultrahigh vacuum for interface engineering
    Sun, Zhenyu
    Han, Xu
    Cai, Zhihao
    Yue, Shaosheng
    Geng, Daiyu
    Rong, Dongke
    Zhao, Lin
    Zhang, Yi-Qi
    Cheng, Peng
    Chen, Lan
    Zhou, Xingjiang
    Huang, Yuan
    Wu, Kehui
    Feng, Baojie
    [J]. SCIENCE BULLETIN, 2022, 67 (13) : 1345 - 1351