Nanoscale Guiding of Infrared Light with Hyperbolic Volume and Surface Polaritons in van der Waals Material Ribbons

被引:33
|
作者
Dolado, Irene [1 ]
Alfaro-Mozaz, Francisco Javier [1 ]
Li, Peining [1 ,2 ]
Nikulina, Elizaveta [1 ]
Bylinkin, Andrei [1 ,3 ]
Liu, Song [4 ]
Edgar, James H. [4 ]
Casanova, Felix [1 ,5 ]
Hueso, Luis E. [1 ,5 ]
Alonso-Gonzalez, Pablo [6 ]
Velez, Sauel [7 ]
Nikitin, Alexey Y. [3 ,5 ]
Hillenbrand, Rainer [1 ,5 ,8 ]
机构
[1] CIC NanoGUNE BRTA, Donostia San Sebastian 20018, Spain
[2] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[3] DIPC, Donostia San Sebastian 20018, Spain
[4] Kansas State Univ, Tim Taylor Dept Chem Engn, Manhattan, KS 66506 USA
[5] Ikerbasque, Basque Fdn Sci, E-48011 Bilbao, Spain
[6] Univ Oviedo, Dept Fis, E-33006 Oviedo, Spain
[7] Swiss Fed Inst Technol, Dept Mat, CH-8093 Zurich 8093, Switzerland
[8] Univ Basque Country, Dept Elect & Elect, Bilbao 48080, Spain
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
hexagonal boron nitride; hyperbolic phonon polaritons; linear waveguides; mid-infrared; s-SNOM; WAVE-GUIDES;
D O I
10.1002/adma.201906530
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Van der Waals (vdW) materials host a variety of polaritons, which make them an emerging material platform for manipulating light at the nanoscale. Due to the layered structure of vdW materials, the polaritons can exhibit a hyperbolic dispersion and propagate as nanoscale-confined volume modes in thin flakes. On the other hand, surface-confined modes can be found at the flake edges. Surprisingly, the guiding of these modes in ribbons-representing typical linear waveguide structures-is widely unexplored. Here, a detailed study of hyperbolic phonon polaritons propagating in hexagonal boron nitride ribbons is reported. Employing infrared nanoimaging, a variety of modes are observed. Particularly, the fundamental volume waveguide mode that exhibits a cutoff width is identified, which, interestingly, can be lowered by reducing the waveguide thickness. Further, hybridization of the surface modes and their evolution with varying frequency and waveguide width are observed. Most importantly, it is demonstrated that the symmetrically hybridized surface mode does not exhibit a cutoff width, and thus enables linear waveguiding of the polaritons in arbitrarily narrow ribbons. The experimental data, supported by simulations, establish a solid basis for the understanding of hyperbolic polaritons in linear waveguides, which is of critical importance for their application in future photonic devices.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Hyperbolic exciton polaritons in a van der Waals magnet
    Francesco L. Ruta
    Shuai Zhang
    Yinming Shao
    Samuel L. Moore
    Swagata Acharya
    Zhiyuan Sun
    Siyuan Qiu
    Johannes Geurs
    Brian S. Y. Kim
    Matthew Fu
    Daniel G. Chica
    Dimitar Pashov
    Xiaodong Xu
    Di Xiao
    Milan Delor
    X-Y. Zhu
    Andrew J. Millis
    Xavier Roy
    James C. Hone
    Cory R. Dean
    Mikhail I. Katsnelson
    Mark van Schilfgaarde
    D. N. Basov
    [J]. Nature Communications, 14 (1)
  • [2] Hyperbolic exciton polaritons in a van der Waals magnet
    Ruta, Francesco L.
    Zhang, Shuai
    Shao, Yinming
    Moore, Samuel L.
    Acharya, Swagata
    Sun, Zhiyuan
    Qiu, Siyuan
    Geurs, Johannes
    Kim, Brian S. Y.
    Fu, Matthew
    Chica, Daniel G.
    Pashov, Dimitar
    Xu, Xiaodong
    Xiao, Di
    Delor, Milan
    Zhu, X-y.
    Millis, Andrew J.
    Roy, Xavier
    Hone, James C.
    Dean, Cory R.
    Katsnelson, Mikhail I.
    van Schilfgaarde, Mark
    Basov, D. N.
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [3] Programmable hyperbolic polaritons in van der Waals semiconductors
    Sternbach, A. J.
    Chae, S. H.
    Latini, S.
    Rikhter, A. A.
    Shao, Y.
    Li, B.
    Rhodes, D.
    Kim, B.
    Schuck, P. J.
    Xu, X.
    Zhu, X-Y
    Averitt, R. D.
    Hone, J.
    Fogler, M. M.
    Rubio, A.
    Basov, D. N.
    [J]. SCIENCE, 2021, 371 (6529) : 617 - +
  • [4] Optical Nanoimaging of Hyperbolic Surface Polaritons at the Edges of van der Waals Materials
    Li, P.
    Dolado, I.
    Alfaro-Mozaz, F. J.
    Nikitin, A. Yu.
    Casanova, F.
    Hueso, L. E.
    Velez, S.
    Hillenbrand, R.
    [J]. NANO LETTERS, 2017, 17 (01) : 228 - 235
  • [5] Phonon Polaritons and Hyperbolic Response in van der Waals Materials
    Hu, Guangwei
    Shen, Jialiang
    Qiu, Cheng-Wei
    Alu, Andrea
    Dai, Siyuan
    [J]. ADVANCED OPTICAL MATERIALS, 2020, 8 (05):
  • [6] Spatiotemporal beating and vortices of van der Waals hyperbolic polaritons
    Zhang, Tianning
    Yan, Qizhi
    Yang, Xiaosheng
    Ma, Weiliang
    Chen, Runkun
    Zhang, Xin
    Janzen, Eli
    Edgar, James H.
    Qiu, Cheng-Wei
    Zhang, Xinliang
    Li, Peining
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (12) : e2319465121
  • [7] Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas
    Martin-Sanchez, Javier
    Duan, Jiahua
    Taboada-Gutierrez, Javier
    Alvarez-Perez, Gonzalo
    Voronin, Kirill V.
    Prieto, Ivan
    Ma, Weiliang
    Bao, Qiaoliang
    Volkov, Valentyn S.
    Hillenbrand, Rainer
    Nikitin, Alexey Y.
    Alonso-Gonzalez, Pablo
    [J]. SCIENCE ADVANCES, 2021, 7 (41):
  • [8] Nanoscale-Confined Terahertz Polaritons in a van der Waals Crystal
    de Oliveira, Thales V. A. G.
    Noerenberg, Tobias
    Alvarez-Perez, Gonzalo
    Wehmeier, Lukas
    Taboada-Gutierrez, Javier
    Obst, Maximilian
    Hempel, Franz
    Lee, Eduardo J. H.
    Klopf, J. Michael
    Errea, Ion
    Nikitin, Alexey Y.
    Kehr, Susanne C.
    Alonso-Gonzalez, Pablo
    Eng, Lukas M.
    [J]. ADVANCED MATERIALS, 2021, 33 (02)
  • [9] Anisotropic Fermat's principle for controlling hyperbolic van der Waals polaritons
    SICEN TAO
    TAO HOU
    YALI ZENG
    GUANGWEI HU
    ZIXUN GE
    JUNKE LIAO
    SHAN ZHU
    TAN ZHANG
    CHENG-WEI QIU
    HUANYANG CHEN
    [J]. Photonics Research, 2022, 10 (10) : 2258 - 2266
  • [10] Planar hyperbolic polaritons in 2D van der Waals materials
    Hongwei Wang
    Anshuman Kumar
    Siyuan Dai
    Xiao Lin
    Zubin Jacob
    Sang-Hyun Oh
    Vinod Menon
    Evgenii Narimanov
    Young Duck Kim
    Jian-Ping Wang
    Phaedon Avouris
    Luis Martin Moreno
    Joshua Caldwell
    Tony Low
    [J]. Nature Communications, 15 (1)