Nanoscale Guiding of Infrared Light with Hyperbolic Volume and Surface Polaritons in van der Waals Material Ribbons

被引:33
|
作者
Dolado, Irene [1 ]
Alfaro-Mozaz, Francisco Javier [1 ]
Li, Peining [1 ,2 ]
Nikulina, Elizaveta [1 ]
Bylinkin, Andrei [1 ,3 ]
Liu, Song [4 ]
Edgar, James H. [4 ]
Casanova, Felix [1 ,5 ]
Hueso, Luis E. [1 ,5 ]
Alonso-Gonzalez, Pablo [6 ]
Velez, Sauel [7 ]
Nikitin, Alexey Y. [3 ,5 ]
Hillenbrand, Rainer [1 ,5 ,8 ]
机构
[1] CIC NanoGUNE BRTA, Donostia San Sebastian 20018, Spain
[2] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[3] DIPC, Donostia San Sebastian 20018, Spain
[4] Kansas State Univ, Tim Taylor Dept Chem Engn, Manhattan, KS 66506 USA
[5] Ikerbasque, Basque Fdn Sci, E-48011 Bilbao, Spain
[6] Univ Oviedo, Dept Fis, E-33006 Oviedo, Spain
[7] Swiss Fed Inst Technol, Dept Mat, CH-8093 Zurich 8093, Switzerland
[8] Univ Basque Country, Dept Elect & Elect, Bilbao 48080, Spain
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
hexagonal boron nitride; hyperbolic phonon polaritons; linear waveguides; mid-infrared; s-SNOM; WAVE-GUIDES;
D O I
10.1002/adma.201906530
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Van der Waals (vdW) materials host a variety of polaritons, which make them an emerging material platform for manipulating light at the nanoscale. Due to the layered structure of vdW materials, the polaritons can exhibit a hyperbolic dispersion and propagate as nanoscale-confined volume modes in thin flakes. On the other hand, surface-confined modes can be found at the flake edges. Surprisingly, the guiding of these modes in ribbons-representing typical linear waveguide structures-is widely unexplored. Here, a detailed study of hyperbolic phonon polaritons propagating in hexagonal boron nitride ribbons is reported. Employing infrared nanoimaging, a variety of modes are observed. Particularly, the fundamental volume waveguide mode that exhibits a cutoff width is identified, which, interestingly, can be lowered by reducing the waveguide thickness. Further, hybridization of the surface modes and their evolution with varying frequency and waveguide width are observed. Most importantly, it is demonstrated that the symmetrically hybridized surface mode does not exhibit a cutoff width, and thus enables linear waveguiding of the polaritons in arbitrarily narrow ribbons. The experimental data, supported by simulations, establish a solid basis for the understanding of hyperbolic polaritons in linear waveguides, which is of critical importance for their application in future photonic devices.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Infrared hyperbolic metasurface based on nanostructured van der Waals materials
    Li, Peining
    Dolado, Irene
    Javier Alfaro-Mozaz, Francisco
    Casanova, Felix
    Hueso, Luis E.
    Liu, Song
    Edgar, James H.
    Nikitin, Alexey Y.
    Velez, Saul
    Hillenbrand, Rainer
    [J]. SCIENCE, 2018, 359 (6378) : 892 - +
  • [22] Spontaneous emission modulation in biaxial hyperbolic van der Waals material
    Liu, Haotuo
    Hu, Yang
    Ai, Qing
    Xie, Ming
    Wu, Xiaohu
    [J]. JOURNAL OF APPLIED PHYSICS, 2022, 132 (17)
  • [23] Hyperbolic phonon-plasmon polaritons in a hBN-graphene van der Waals structure
    Bludov, Yu., V
    Bahamon, D. A.
    Peres, N. M. R.
    De Matos, C. J. S.
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2024, 41 (03) : 626 - 636
  • [24] Airy-Like Hyperbolic Shear Polaritons in High Symmetry van der Waals Crystals
    Bai, Yihua
    Zhang, Qing
    Zhang, Tan
    Lv, Haoran
    Yan, Jiadian
    Wang, Jiandong
    Fu, Shenhe
    Hu, Guangwei
    Qiu, Cheng-Wei
    Yang, Yuanjie
    [J]. LASER & PHOTONICS REVIEWS, 2024, 18 (07)
  • [25] Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope
    Govyadinov, Alexander A.
    Konecna, Andrea
    Chuvilin, Andrey
    Velez, Saul
    Dolado, Irene
    Nikitin, Alexey Y.
    Lopatin, Sergei
    Casanova, Felix
    Hueso, Luis E.
    Aizpurua, Javier
    Hillenbrand, Rainer
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [26] Hyperbolic exciton polaritons in a van der Waals magnet (vol 14, pg 8261, 2023)
    Ruta, Francesco L.
    Zhang, Shuai
    Shao, Yinming
    Moore, Samuel L.
    Acharya, Swagata
    Sun, Zhiyuan
    Qiu, Siyuan
    Geurs, Johannes
    Kim, Brian S. Y.
    Fu, Matthew
    Chica, Daniel G.
    Pashov, Dimitar
    Xu, Xiaodong
    Xiao, Di
    Delor, Milan
    Zhu, X-y.
    Millis, Andrew J.
    Roy, Xavier
    Hone, James C.
    Dean, Cory R.
    Katsnelson, Mikhail I.
    van Schilfgaarde, Mark
    Basov, D. N.
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [27] Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope
    Alexander A. Govyadinov
    Andrea Konečná
    Andrey Chuvilin
    Saül Vélez
    Irene Dolado
    Alexey Y. Nikitin
    Sergei Lopatin
    Fèlix Casanova
    Luis E. Hueso
    Javier Aizpurua
    Rainer Hillenbrand
    [J]. Nature Communications, 8
  • [28] Resonant Metasurfaces with Van Der Waals Hyperbolic Nanoantennas and Extreme Light Confinement
    Babicheva, Viktoriia E.
    [J]. NANOMATERIALS, 2024, 14 (18)
  • [29] Tunable Hyperbolic Phonon Polaritons in a Suspended van der Waals α-MoO3 with Gradient Gaps
    Zheng, Zebo
    Sun, Fengsheng
    Xu, Ningsheng
    Huang, Wuchao
    Chen, Xuexian
    Ke, Yanlin
    Zhan, Runze
    Chen, Huanjun
    Deng, Shaozhi
    [J]. ADVANCED OPTICAL MATERIALS, 2022, 10 (05)
  • [30] Highly Confined and Tunable Hyperbolic Phonon Polaritons in Van Der Waals Semiconducting Transition Metal Oxides
    Zheng, Zebo
    Chen, Jianing
    Wang, Yu
    Wang, Ximiao
    Chen, Xiaobo
    Liu, Pengyi
    Xu, Jianbin
    Xie, Weiguang
    Chen, Huanjun
    Deng, Shaozhi
    Xu, Ningsheng
    [J]. ADVANCED MATERIALS, 2018, 30 (13)