Improved estimation in a non-Gaussian parametric regression

被引:0
|
作者
Pchelintsev E. [1 ,2 ]
机构
[1] Department of Mathematics and Mechanics, Tomsk State University, Tomsk, 634050
[2] Laboratoire de Mathématiques Raphaël Salem, UMR 6085 CNRS, Université de Rouen, Saint Etienne du Rouvray Cedex, 76800
基金
俄罗斯基础研究基金会;
关键词
Autoregressive noise; Improved estimates; Non-Gaussian parametric regression; Ornstein-Uhlenbeck process; Pulse noise; Quadratic risk;
D O I
10.1007/s11203-013-9075-0
中图分类号
学科分类号
摘要
The paper considers the problem of estimating the parameters in a continuous time regression model with a non-Gaussian noise of pulse type. The vector of unknown parameters is assumed to belong to a compact set. The noise is specified by the Ornstein-Uhlenbeck process driven by the mixture of a Brownian motion and a compound Poisson process. Improved estimates for the unknown regression parameters, based on a special modification of the James-Stein procedure with smaller quadratic risk than the usual least squares estimates, are proposed. The developed estimation scheme is applied for the improved parameter estimation in the discrete time regression with the autoregressive noise depending on unknown nuisance parameters. © 2013 Springer Science+Business Media Dordrecht.
引用
收藏
页码:15 / 28
页数:13
相关论文
共 50 条
  • [1] Log-periodogram regression for non-parametric estimation of spectral density for a non-Gaussian series
    Fay, G
    Moulines, E
    Soulier, P
    [J]. NINTH IEEE SIGNAL PROCESSING WORKSHOP ON STATISTICAL SIGNAL AND ARRAY PROCESSING, PROCEEDINGS, 1998, : 332 - 335
  • [2] Parametric Estimation from Approximate Data: Non-Gaussian Diffusions
    Robert Azencott
    Peng Ren
    Ilya Timofeyev
    [J]. Journal of Statistical Physics, 2015, 161 : 1276 - 1298
  • [3] Parametric Estimation from Approximate Data: Non-Gaussian Diffusions
    Azencott, Robert
    Ren, Peng
    Timofeyev, Ilya
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2015, 161 (05) : 1276 - 1298
  • [4] Efficient estimation methods for non-Gaussian regression models in continuous time
    Evgeny Pchelintsev
    Serguei Pergamenshchikov
    Maria Povzun
    [J]. Annals of the Institute of Statistical Mathematics, 2022, 74 : 113 - 142
  • [5] Efficient estimation methods for non-Gaussian regression models in continuous time
    Pchelintsev, Evgeny
    Pergamenshchikov, Serguei
    Povzun, Maria
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2022, 74 (01) : 113 - 142
  • [6] Robust estimation in multiple linear regression model with non-Gaussian noise
    Akkaya, Aysen D.
    Tiku, Moti L.
    [J]. AUTOMATICA, 2008, 44 (02) : 407 - 417
  • [7] Non-parametric estimation of reference intervals in small non-Gaussian sample sets
    Johan Bjerner
    Elvar Theodorsson
    Eivind Hovig
    Anders Kallner
    [J]. Accreditation and Quality Assurance, 2009, 14 : 185 - 192
  • [8] Non-parametric estimation of reference intervals in small non-Gaussian sample sets
    Bjerner, Johan
    Theodorsson, Elvar
    Hovig, Eivind
    Kallner, Anders
    [J]. ACCREDITATION AND QUALITY ASSURANCE, 2009, 14 (04) : 185 - 192
  • [9] MINIMAX ESTIMATION OF THE GAUSSIAN PARAMETRIC REGRESSION
    Pchelintsev, V. A.
    Pchelintsev, E. A.
    [J]. VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2014, (31): : 40 - 47
  • [10] Parametric estimation of third order spectra of a mixture of non-Gaussian signal and Gaussian correlated interference
    Tikhonov, VA
    Netrebenko, KV
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 2005, 48 (1-2): : A35 - A43