parametric regression;
improved estimation;
James - Stein procedure;
mean squared risk;
minimax estimator;
D O I:
暂无
中图分类号:
O3 [力学];
学科分类号:
08 ;
0801 ;
摘要:
The paper considers the problem of estimating a d >= 2 dimensional mean vector of a multivariate normal distribution under quadratic loss. Let the observations be described by the equation Y = theta + sigma xi, (1) where. is a d-dimension vector of unknown parameters from some bounded set Theta subset of R-d, xi is a Gaussian random vector with zero mean and identity covariance matrix I-d, i.e. Law(xi)=N-d(0, I-d) and sigma is a known positive number. The problem is to construct a minimax estimator of the vector. from observations Y. As a measure of the accuracy of estimator (theta) over cap we select the quadratic risk defined as R(theta, (theta) over cap) := E-theta vertical bar theta - (theta) over cap vertical bar(2) , vertical bar x vertical bar(2) = Sigma(d)(j=1) x(j)(2), where E-theta is the expectation with respect to measure P-theta. We propose a modification of the James - Stein procedure of the form theta(*)(+) = (1 - c/vertical bar Y vertical bar)(+) Y where c > 0 is a special constant and a(+) = max(a, 0) is a positive part of a. This estimate allows one to derive an explicit upper bound for the quadratic risk and has a significantly smaller risk than the usual maximum likelihood estimator and the estimator theta(*) = (1 - c/vertical bar Y vertical bar)(+) Y for the dimensions d >= 2. We establish that the proposed procedure theta(*)(+) is minimax estimator for the vector theta. A numerical comparison of the quadratic risks of the considered procedures is given. In conclusion it is shown that the proposed minimax estimator theta(*)(+) is the best estimator in the mean square sense.
机构:
Department of Mathematics and Mechanics, Tomsk State University, Tomsk, 634050
Laboratoire de Mathématiques Raphaël Salem, UMR 6085 CNRS, Université de Rouen, Saint Etienne du Rouvray Cedex, 76800Department of Mathematics and Mechanics, Tomsk State University, Tomsk, 634050
机构:
ENS Rennes, IRMAR, CNRS, Campus Ker Lann,Ave Robert Schuman, F-35170 Bruz, FranceENS Rennes, IRMAR, CNRS, Campus Ker Lann,Ave Robert Schuman, F-35170 Bruz, France
Cadre, Benoit
Klutchnikoff, Nicolas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Rennes 2, IRMAR, CNRS, Campus Villejean,Pl Recteur Henri le Moal, F-35043 Rennes, FranceENS Rennes, IRMAR, CNRS, Campus Ker Lann,Ave Robert Schuman, F-35170 Bruz, France
Klutchnikoff, Nicolas
Massiot, Gaspar
论文数: 0引用数: 0
h-index: 0
机构:
Univ Rennes 2, IRMAR, CNRS, Campus Villejean,Pl Recteur Henri le Moal, F-35043 Rennes, FranceENS Rennes, IRMAR, CNRS, Campus Ker Lann,Ave Robert Schuman, F-35170 Bruz, France