Accelerating materials discovery using artificial intelligence, high performance computing and robotics

被引:0
|
作者
Edward O. Pyzer-Knapp
Jed W. Pitera
Peter W. J. Staar
Seiji Takeda
Teodoro Laino
Daniel P. Sanders
James Sexton
John R. Smith
Alessandro Curioni
机构
[1] IBM Research Europe - Daresbury,
[2] IBM Almaden Research Centre,undefined
[3] IBM Research Europe Zurich,undefined
[4] IBM Research Tokyo,undefined
[5] IBM Thomas J. Watson Research Centre,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
New tools enable new ways of working, and materials science is no exception. In materials discovery, traditional manual, serial, and human-intensive work is being augmented by automated, parallel, and iterative processes driven by Artificial Intelligence (AI), simulation and experimental automation. In this perspective, we describe how these new capabilities enable the acceleration and enrichment of each stage of the discovery cycle. We show, using the example of the development of a novel chemically amplified photoresist, how these technologies’ impacts are amplified when they are used in concert with each other as powerful, heterogeneous workflows.
引用
收藏
相关论文
共 50 条
  • [41] Convergence of artificial intelligence and high performance computing on NSF-supported cyberinfrastructure
    Huerta, E. A.
    Khan, Asad
    Davis, Edward
    Bushell, Colleen
    Gropp, William D.
    Katz, Daniel S.
    Kindratenko, Volodymyr
    Koric, Seid
    Kramer, William T. C.
    McGinty, Brendan
    McHenry, Kenton
    Saxton, Aaron
    JOURNAL OF BIG DATA, 2020, 7 (01)
  • [42] Accelerating the pace of ecotoxicological assessment using artificial intelligence
    Runsheng Song
    Dingsheng Li
    Alexander Chang
    Mengya Tao
    Yuwei Qin
    Arturo A. Keller
    Sangwon Suh
    Ambio, 2022, 51 : 598 - 610
  • [43] HIGH-PERFORMANCE COMPUTATION AND ARTIFICIAL INTELLIGENCE IN PESTICIDE DISCOVERY: STATUS AND OUTLOOK
    Zhang, Li
    Cui, Jialin
    He, Qi
    LI, Qing X.
    FRONTIERS OF AGRICULTURAL SCIENCE AND ENGINEERING, 2022, 9 (01) : 150 - 154
  • [44] ACCELERATING BRAIN RESEARCH USING EXPLAINABLE ARTIFICIAL INTELLIGENCE
    Chou, Jing-Lun
    Huang, Ya-Lin
    Hsieh, Chia-Ying
    Huang, Jian-Xue
    Wei, Chun-Shu
    2022 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS (IEEE ICMEW 2022), 2022,
  • [45] Accelerating Materials Development via Automation, Machine Learning, and High-Performance Computing
    Correa-Baena, Juan-Pablo
    Hippalgaonkar, Kedar
    van Duren, Jeroen
    Jaffer, Shaffiq
    Chandrasekhar, Vijay R.
    Stevanovic, Vladan
    Wadia, Cyrus
    Guha, Supratik
    Buonassisi, Tonio
    JOULE, 2018, 2 (08) : 1410 - 1420
  • [46] Artificial intelligence and robotics in high throughput post-genomics
    Laghaee, A
    Malcolm, C
    Hallam, J
    Ghazal, P
    DRUG DISCOVERY TODAY, 2005, 10 (18) : 1253 - 1259
  • [47] Artificial Intelligence Driving Materials Discovery? Perspective on the Article: Scaling Deep Learning for Materials Discovery
    Cheetham, Anthony K.
    Seshadri, Ram
    CHEMISTRY OF MATERIALS, 2024, 36 (08) : 3490 - 3495
  • [48] Transparent conducting materials discovery using high-throughput computing
    Brunin, Guillaume
    Ricci, Francesco
    Viet-Anh Ha
    Rignanese, Gian-Marco
    Hautier, Geoffroy
    NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
  • [49] Transparent conducting materials discovery using high-throughput computing
    Guillaume Brunin
    Francesco Ricci
    Viet-Anh Ha
    Gian-Marco Rignanese
    Geoffroy Hautier
    npj Computational Materials, 5
  • [50] Accelerating Computational Materials Discovery with Machine Learning and Cloud High-Performance Computing: from Large-Scale Screening to Experimental Validation
    Chen, Chi
    Nguyen, Dan Thien
    Lee, Shannon J.
    Baker, Nathan A.
    Karakoti, Ajay S.
    Lauw, Linda
    Owen, Craig
    Mueller, Karl T.
    Bilodeau, Brian A.
    Murugesan, Vijayakumar
    Troyer, Matthias
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (29) : 20009 - 20018