Accelerating materials discovery using artificial intelligence, high performance computing and robotics

被引:0
|
作者
Edward O. Pyzer-Knapp
Jed W. Pitera
Peter W. J. Staar
Seiji Takeda
Teodoro Laino
Daniel P. Sanders
James Sexton
John R. Smith
Alessandro Curioni
机构
[1] IBM Research Europe - Daresbury,
[2] IBM Almaden Research Centre,undefined
[3] IBM Research Europe Zurich,undefined
[4] IBM Research Tokyo,undefined
[5] IBM Thomas J. Watson Research Centre,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
New tools enable new ways of working, and materials science is no exception. In materials discovery, traditional manual, serial, and human-intensive work is being augmented by automated, parallel, and iterative processes driven by Artificial Intelligence (AI), simulation and experimental automation. In this perspective, we describe how these new capabilities enable the acceleration and enrichment of each stage of the discovery cycle. We show, using the example of the development of a novel chemically amplified photoresist, how these technologies’ impacts are amplified when they are used in concert with each other as powerful, heterogeneous workflows.
引用
收藏
相关论文
共 50 条
  • [31] Accelerating materials discovery using machine learning
    Yongfei Juan
    Yongbing Dai
    Yang Yang
    Jiao Zhang
    JournalofMaterialsScience&Technology, 2021, 79 (20) : 178 - 190
  • [32] Accelerating materials discovery using machine learning
    Juan, Yongfei
    Dai, Yongbing
    Yang, Yang
    Zhang, Jiao
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 79 : 178 - 190
  • [33] Enhancing Student Learning in Artificial Intelligence Using Robotics
    Stansbury, Richard S.
    IEEE SOUTHEASTCON 2010: ENERGIZING OUR FUTURE, 2010, : 168 - 171
  • [34] A BREAKTHROUGH IN ARTIFICIAL INTELLIGENCE-ENABLED MATERIALS DISCOVERY
    Bailey, Mary Page
    Chemical Engineering (United States), 2021, 128 (01):
  • [35] Artificial Intelligence Guided Thermoelectric Materials Design and Discovery
    Han, Guangshuai
    Sun, Yixuan
    Feng, Yining
    Lin, Guang
    Lu, Na
    ADVANCED ELECTRONIC MATERIALS, 2023, 9 (08)
  • [36] Reaction: The Near Future of Artificial Intelligence in Materials Discovery
    Gomez-Bombarelli, Rafael
    CHEM, 2018, 4 (06): : 1189 - 1190
  • [37] Accelerating Collaborative Filtering Using Concepts from High Performance Computing
    Gates, Mark
    Anzt, Hartwig
    Kurzak, Jakub
    Dongarra, Jack
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2015, : 667 - 676
  • [38] HIGH-PERFORMANCE COMPUTATION AND ARTIFICIAL INTELLIGENCE IN PESTICIDE DISCOVERY: STATUS AND OUTLOOK
    Li ZHANG
    Jialin CUI
    Qi HE
    Qing X.LI
    FrontiersofAgriculturalScienceandEngineering, 2022, 9 (01) : 150 - 154
  • [39] Convergence of artificial intelligence and high performance computing on NSF-supported cyberinfrastructure
    E. A. Huerta
    Asad Khan
    Edward Davis
    Colleen Bushell
    William D. Gropp
    Daniel S. Katz
    Volodymyr Kindratenko
    Seid Koric
    William T. C. Kramer
    Brendan McGinty
    Kenton McHenry
    Aaron Saxton
    Journal of Big Data, 7
  • [40] Accelerating the pace of ecotoxicological assessment using artificial intelligence
    Song, Runsheng
    Li, Dingsheng
    Chang, Alexander
    Tao, Mengya
    Qin, Yuwei
    Keller, Arturo A.
    Suh, Sangwon
    AMBIO, 2022, 51 (03) : 598 - 610