A maximal function for families of Hilbert transforms along homogeneous curves

被引:0
|
作者
Shaoming Guo
Joris Roos
Andreas Seeger
Po-Lam Yung
机构
[1] University of Wisconsin-Madison,Department of Mathematics
[2] The Chinese University of Hong Kong,Department of Mathematics
来源
Mathematische Annalen | 2020年 / 377卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let H(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{(u)}$$\end{document} be the Hilbert transform along the parabola (t,ut2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(t, ut^2)$$\end{document} where u∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in \mathbb {R}$$\end{document}. For a set U of positive numbers consider the maximal function HUf=sup{|H(u)f|:u∈U}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}^U \,f= \sup \{|H^{(u)}\, f|: u\in U\}$$\end{document}. We obtain an (essentially) optimal result for the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} operator norm of HU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}^U$$\end{document} when 2<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<p<\infty $$\end{document}. The results are proved for families of Hilbert transforms along more general nonflat homogeneous curves.
引用
收藏
页码:69 / 114
页数:45
相关论文
共 50 条
  • [21] VECTOR-VALUED HILBERT TRANSFORMS ALONG CURVES
    Hong, Guixiang
    Liu, Honghai
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 10 (02): : 430 - 450
  • [22] Estimates for Hilbert transforms along variable general curves
    Yu, Haixia
    He, Kaili
    Li, Dan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (02)
  • [23] Oscillatory hyper Hilbert transforms along general curves
    Chen, Jiecheng
    Damtew, Belay Mitiku
    Zhu, Xiangrong
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (02) : 281 - 299
  • [24] Oscillatory hyper Hilbert transforms along variable curves
    Chen, Jiecheng
    Fan, Dashan
    Wang, Meng
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (04) : 673 - 692
  • [25] LP ESTIMATES FOR MAXIMAL FUNCTIONS AND HILBERT-TRANSFORMS ALONG FLAT CONVEX CURVES IN R2
    CARLSSON, H
    CHRIST, M
    CORDOBA, A
    DUOANDIKOETXEA, J
    DEFRANCIA, JLR
    VANCE, J
    WAINGER, S
    WEINBERG, D
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 14 (02) : 263 - 267
  • [26] BILINEAR HILBERT TRANSFORMS ALONG CURVES I: THE MONOMIAL CASE
    Li, Xiaochun
    [J]. ANALYSIS & PDE, 2013, 6 (01): : 197 - 220
  • [27] On maximal function of discrete rough truncated Hilbert transforms
    Paluszynski, Maciej
    Zienkiewicz, Jacek
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (06) : 2785 - 2801
  • [28] LP BOUNDS FOR HILBERT-TRANSFORMS ALONG CONVEX CURVES
    CORDOBA, A
    NAGEL, A
    VANCE, J
    WAINGER, S
    WEINBERG, D
    [J]. INVENTIONES MATHEMATICAE, 1986, 83 (01) : 59 - 71
  • [29] On maximal function of discrete rough truncated Hilbert transforms
    Maciej Paluszyński
    Jacek Zienkiewicz
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 2785 - 2801
  • [30] Hilbert transforms along variable planar curves: Lipschitz regularity
    Liu, Naijia
    Yu, Haixia
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (04)