Asymptotic Behaviour for a Nonlinear Schrödinger Equation in Domains with Moving Boundaries

被引:0
|
作者
Vanilde Bisognin
Celene Buriol
Marcio V. Ferreira
Mauricio Sepúlveda
Octavio Vera
机构
[1] Centro Universitario Franciscano,Departamento de Matemática
[2] Universidade Federal de Santa Maria,CI²MA and Departamento de Ingeniería Matemática
[3] Universidad de Concepción,Departamento de Matemática
[4] Universidad del Bío-Bío,undefined
来源
关键词
Schrödinger equation; Stabilization; Moving boundary; 35K60; 93C20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a nonlinear Schrödinger equation in a time-dependent domain Qτ of ℝ2 given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{\tau} - i u_{\varepsilon\varepsilon} + |u|^{2} u + \gamma v=0. $$\end{document} We prove the well-posedness of the above model and analyze the behaviour of the solution as t→+∞. We consider two situations: the conservative case (γ=0) and the dissipative case (γ>0). In both situations the existence of solutions are proved using the Galerkin method and the stabilization of solutions are obtained considering multiplier techniques.
引用
收藏
页码:159 / 172
页数:13
相关论文
共 50 条
  • [41] On discretizations of the vector nonlinear Schrödinger equation
    Department of Applied Mathematics, University of Colorado-Boulder, Boulder, CO 80309, United States
    不详
    Phys Lett Sect A Gen At Solid State Phys, 5-6 (287-304):
  • [42] The inverse problem for a nonlinear Schrödinger equation
    Yagubov G.Ya.
    Musaeva M.A.
    Journal of Mathematical Sciences, 1999, 97 (2) : 3981 - 3984
  • [43] Nonlinear Schrödinger equation for integrated photonics
    Gravesen, Kevin Bach
    Gardner, Asger Brimnes
    Ulsig, Emil Zanchetta
    Stanton, Eric J.
    Hansen, Mikkel Torrild
    Thomsen, Simon Thorndahl
    Ahler, Lucas
    Volet, Nicolas
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2024, 41 (06) : 1451 - 1456
  • [44] The elliptic breather for the nonlinear Schrödinger equation
    Smirnov A.O.
    Journal of Mathematical Sciences, 2013, 192 (1) : 117 - 125
  • [45] On a nonlinear Schrödinger equation with periodic potential
    Thomas Bartsch
    Yanheng Ding
    Mathematische Annalen, 1999, 313 : 15 - 37
  • [46] On Solutions to the Matrix Nonlinear Schrödinger Equation
    A. V. Domrin
    Computational Mathematics and Mathematical Physics, 2022, 62 : 920 - 932
  • [47] On the Dynamics of Solitons in the Nonlinear Schrödinger Equation
    Vieri Benci
    Marco Ghimenti
    Anna Maria Micheletti
    Archive for Rational Mechanics and Analysis, 2012, 205 : 467 - 492
  • [48] On Asymptotic Nonlocal Symmetry of Nonlinear Schrödinger Equations
    W. W. Zachary
    V. M. Shtelen
    Journal of Nonlinear Mathematical Physics, 1998, 5 : 417 - 437
  • [49] Colliding Solitons for the Nonlinear Schrödinger Equation
    W. K. Abou Salem
    J. Fröhlich
    I. M. Sigal
    Communications in Mathematical Physics, 2009, 291 : 151 - 176
  • [50] Nonlinear Schrödinger equation and superfluid hydrodynamics
    C. Coste
    The European Physical Journal B - Condensed Matter and Complex Systems, 1998, 1 : 245 - 253